Значение межклеточного взаимодействия для жизнедеятельности организма

Межклеточные взаимодействия — это взаимодействия клеток друг с другом.Могут быть как дистантными,на расстоянии, так и кон­тактными.Дистантные взаимодействия осуществляются при помощи ра­створимых веществ, секретируемых клетками в окружающую их среду и воз­действующих на другие клетки. Эти вещества называются медиаторами,или посредниками. В качестве медиаторов могут выступать гормоны, биогенные амины, антитела и многие дру­гие биологически активные вещества, эти вещества воздействуют на репепторный аппарат клеток, с которыми взаимодействует выделившая медиатор клетка. Следовательно, дистантные межклеточные взаимодействия опосре­дуют действие на клетки гормонов, имеют место при иммунном ответе, эм­бриональном развитии (эмбриональ­ная индукция,см. эмбриологию) и при многих других важных клеточных реакциях.

Кроме того, в многоклеточном организме все клетки связаны между собой при помощи межклеточных кон­тактов (контактные межклеточные взаимодействия). Контактные взаимо­действия состоят из нескольких фаз и включают как начальный этап дис­тантные взаимодействия:

1. Узнавание одной клеткой дру­гой клетки (может быть дистантным при посредстве медиаторов и контакт­ным при посредстве рецепторов).

2. Установление между клетками непрочных связей.

3. Формирование устойчивых меж­клеточных контактов. Вторая и третья фазы осуществляются при помощи мо­лекул клеточной адгезии.

Все межклеточные контакты делятся на три основных типа (рис. 3.15, 3.16):

1. Адгезионные контакты,которые механически соединяют клетки между собой. Основной тип адгезионных контактов — десмосомы. Быва­ют трех типов:

точечные десмосомы (пятно десмосомы). Они скрепляют клетки в отдельных местах. При этом с внутренней стороны клеточных мембран двух

клеток находится электрошюплотная пластинка, связанная с сетью кератиновых микрофиламент. Эти филаменты заканчиваются в пластинке или проходят мдоль ее поверхности. Прилегающие друг к другу пластинки двух клеток соеди­нены через межклеточное пространство волокнами из белка неизвестной приро­ды. В межклеточном пространстве есть электронноплотный материал;

опоясывающие десмосомы (зоны десмосомы). Они идут вблизи апи-кального конца клеток по их периметру в виде полосы. Эта полоса состоит из пучков актиновых филаментов, локализующихся со стороны цитоплаз­мы. В межклеточном пространстве есть электронноплотный материал;

полудесмосомы. Представляют собой как бы половинку точечной десмосомы. Прикрепляют эпителиальные клетки к базальной мембране.

В функционировании адгезионных контактов важную роль играют адге­зионные молекулы, такие, как Е-кадгерин, дссмоколлины, десмоглеины и др.

2. Плотные контакты.Это разновидность замыкающих контактов. Данный тип контактов не только механически связывает клетки друг с другом, но и препятствует прохождению между ними молекул. В плот­ных контактах клеточные мембраны подходят друг к другу на расстояние до 5 нм и связываются друг с другом при помощи специальных белков.

3. Проводящие контакты.В этих контактах может осуществляться пе­редача малых молекул из одной клетки в другую. При этом мембраны двух клеток подходят друг к другу на расстояние до 3 нм и образуют ка­налы — коннексоны.Через коннексоны между клетками осуществляется свободный обмен низкомолекулярными веществами (электролитами, вита­минами, нуклеотидами, АТФ, сахарами, аминокислотами и др.). Таким образом, этот тип контактов играет важную роль не только в механичес­кой, но и в химической коммуникации клеток. Пример таких контактов — щелевые контакты: нексусымежду мышечными клетками в гладкой и сер­дечной мускулатуре. При этом возбуждение передается с одной клетки на другую. Второй пример — синапсы— контакты между нервными клетками.

Кроме этих основных видов межклеточных контактов, выделяют так­же интердигитации— или межпальцевые соединения, когда цитоплазма с покрывающей ее цитолеммои одной клетки в виде пальца вклинивается в цитоплазму другой клетки и наоборот. Интердигитации резко увеличива­ют прочность межклеточных соединений, а кроме того, увеличивают пло­щадь межклеточных взаимодействий, благодаря чему возрастает межкле­точный обмен метаболитами.

источник

Челябинская государственная медицинская академия

Кафедра гистологии и эмбриологии

Клеточный гомеостаз и его регуляция

1.Понятие о клеточном гомеостазе

2.Апоптоз: понятие, биологический смысл, характеристика, значение

3.Клеточный цикл: определение, стадии и их продолжительность, биологическое значение.

4.Митоз: понятие, стадии и их характеристика

5.Регуляция клеточного цикла: понятие, классификация факторов, регулирующих пролиферативную активность

6.Межклеточные взаимодействия: представление, значение. Понятие об адгезивных молекулах, внеклеточном матриксе, растворимых медиаторах и онкогенах

7.Межклеточные контакты: понятие, значение, разновидности, строение

Дать современное представление о клеточном гомеостазе.

Разобрать жизненный цикл клетки, биологический смысл каждого периода.

Ознакомить с различными факторами межклеточных взаимодействий.

Отметить сущность апоптоза, его отличительные особенности по сравнению с некрозом.

Разобрать разновидности межклеточных контактов и их значение в жизнедеятельности организма.

Одним из непременных условий для нормального функционирования организма является постоянство количественного и качественного состава клеточных элементов на разных уровнях организации. Явление постоянства количественного и качественного состава клеточных элементов организма называется клеточным гомеостазом. Клеточный гомеостаз определяется, прежде всего, интенсивностью двух биологических процессов: пролиферации и гибели клеточных элементов.

Для того, чтобы многоклеточный организм выжил, некоторые его клетки должны воздерживаться от деления (даже если нет недостатка в питательных веществах). Но когда возникает необходимость в новых клетках (например, при репарации повреждения) ранее неделившиеся клетки должны быстро переключиться на цикл деления. В случаях непрерывного износа ткани скорость новообразования и отмирания клеток должна быть сбалансирована, поэтому должны быть сложные регуляторные механизмы. В организме человека насчитывается огромное количество самых разнообразных клеток. Одни из них могут делиться, а другие – нет. Так, нервные клетки и кардиомиоциты вообще не делятся. Клетки печени делятся 1-2 раза в год, а эпителиальные клетки кишечника делятся 1-2 раза в сутки. Однако, период деления является только частью жизненного пути клетки. Период жизни клетки от одного деления до другого включительно или до смерти представляет собой клеточный цикл.

Клеточный цикл принято изображать графически в виде круга, 1/10 продолжительности которого приходится на деление клетки, т.е. митоз. Этот период жизненного цикла получил название митотического периода или митотической фазы. Оставшаяся часть жизни клетки получила название интерфазы. Таким образом, интерфаза представляет собой период жизни клетки между делениями. Интерфаза включает в себя периоды G1, S, G2. В интерфазе происходят сложные приготовления к митозу. В пресинтетическом (постмитотическом) периоде происходит подготовка к синтезу ДНК, увеличение клетки, а также синтез ферментов, усиливающих энергетический метаболизм и необходимых для последующей репликации ДНК, синтез белка и мРНК. Ядра клеток содержат диплоидный набор хромосом (2n), количество ДНК- 2с. Основные различия клеточного цикла разных клеток определяются продолжительностью периода G1. Так, медлено делящиеся клетки останавливаются после митоза на несколько недель или лет, сохраняя способность к делению, в то время как продолжительнось остальных периодов остается величиной постоянной. Время нахождения клеток в непролиферирующем состоянии называется периодом Go, продолжительность которого зависит не только от типа клеток (например, клетки печени), но и от ряда обстоятельств. Известно, что половые гормоны стимулируют пролиферацию эпителия матки. Кроме того, уменьшение числа клеток также стимулирует процессы митотической активности клеок. Например, кровопотеря (уменьшение числа клеток крови) усиливает процессы гемопоэза. Однако, если клетка пройдет фазу G1, то она обязательно без задержки пройдет последующие периоды клеточного цикла независимо от условий микроокружения. Как только создадутся благоприятные условия для митоза, клетка возобновляет свое продвижение по циклу. Момент перехода клетки из периода G1 в период S называется точкой рестрикции. Вместе с тем, клетки многих типов в результате окончательной дифференцировки переходят в Go период (эритроциты, зрелые гранулоциты, кардиомиоциты) и теряют способность делиться независимо от внешних факторов. В Go периоде репликация ДНК не происходит, но может осуществляться синтез РНК. Особености течения метаболических процессов в таких покоящихся клетках определяет их большую резистентность к действию неблагоприятных факторов.

Период S характеризуется продолжением синтеза ферментов, белков, РНК, ДНК, в результате чего происходит удвоение ДНК и хромосом. Содержание ДНК при этом составляет 2с-4с. Без синтеза ДНК клетка не может вступить в М-период, продолжительность дпного периода колеблется в пределах 6-8 часов. Происходит конденсация хромосом. В G2 периоде идет синтез РНК, в том числе информационной РНК, белков – тубулинов, необходимых для формирования веретенаделения. В клетке содержание ДНК в 2 раза больше, чем в диплоидной клетке,т.е. ядра клеток тетраплоидные (4с). Продолжительность этого периода 2-3 часа. Таким образом, для того чтобы клетка совершила очередное деление необходимо, чтобы она преодолела точку рестрикции, что возможно только при действии внеклеточных факторов.

В митотическом цикле можно выделить 2 периода, в которых клетки могут задерживаться длительное время – G1 и G2, что способствует в тканях накоплению клеток, замедлению прохождения всего митотического цикла, а следовательно завершению пролиферативных процессов. В этом случае говорят о развитии в ткани органа блока периодов G1 и G2. После снятия блока такие клетки продолжают движение по циклу.

На жизнедеятельность клетки, в том числе ее пролиферативную активность, дифференцировку, развитие, тканевую организацию и функционирование многочисленных организмов, существенное влияние оказывают межклеточные взаимодействия. Межклеточные взаимодействия обеспечиваются 4 группами факторов: адгезивными молекулами, внеклеточным матриксом, растворимыми медиаторами и онкогенами.

Адгезивные молекулы – адгезины обеспечивают межклеточные взаимодействия в определных условиях. Среди адгезинов различают несколько видов: интегрины, суперсемейство иммуноглобулинов, кадгерины и селектины.

Интегрины представляют собой рецепторные белки, которые являются связующим звеном между окружающим внеклеточным матриксом и цитоскелетом, т.е. они передают информацию, возникающую при взаимодействии с внеклеточным субстратом, внутрь клетки, влияя на организацию цитоскелета, форму клетки, ее подвижность.

Суперсемейство иммуноглобулинов включает в себя, прежде всего, располагающиеся на поверхностной мембране иммуноглобулины, которые обеспечивают связывание растворимых соединений и поверхностных молекул клетки.

Кадгерины – это белковые молекулы, играющие важную роль в межклеточных контактах, особенно на стадии морфогенеза и органогенеза ( т.е. на начальной стадии межклеточной адгезии).

Селектины представляют собой адгезивные молекулы, которые обеспечивают адгезию лейкоцитов к эндотелиальным клеткам сосудов. Среди них наиболее изучен L-селектин (лимфоцитарный хоминговый рецептор), обеспечивающий попадание лимфоцитов в специфическую лимфоидную ткань.

Внеклеточный матрикс представляет собой супрамолекулярный комплекс, образующий клеточное окружение, которое влияет на пролиферацию, дифференцировку, организацию и прикрепление клеток. Внеклеточный матрикс играет ключевую роль в органогене, эмбриогенезе, посттравматическом заживлении и опухолевом росте. Одним из компонентов внеклеточного матрикса являются стромальные компоненты. Так, содержание коллагена в тканях есть величина более или менее постоянна. Дело в том, что коллаген оказывает влияние на пролиферативную активность и функциональное состояние фибробластов, продуцирующих коллаген, и макрофагов, вырабатывающих фермент- коллагеназу, разрущающий коллаген. Активность этих клеток регулируется по типу обратной связи. Таким образом, колаген выпоняет функцию биохимического контроля морфогенеза.

Межклеточные взаимодествия во многом определяются действием различных растворимых медиаторов, которые оказывают преимущественно локальное (паракринное) действие. К этим медиаторам относятся кейлоны, антикейлоны, простагландины, цитокины, факторы роста, протеолитические ферменты, а также продукты аутокринных и паракринных систем и недавно открытый фактор, вызывающий релаксацию эндотелия- оксид азота.

Известно, что переход клетки к пролиферации обычно происходит в результате специфического связывания определенных сигнальных молекул (лигандов) рецепторами плазматической мембраны. К сигнальным лигандам относятся многочисленные биологически активные соединения, среди которых выделяют, прежде всего, кейлоны.

Кейлоны обнаружены во многих тканях. Они вырабатываются в небольших кличествах и действуют кратковременно. Кейлоны вырабатываются теми же клетками, на которые они действуют, т.е. кейлоны обладают тканеспецифичностью, но не видоспецифичностью. В силу того, что они являются водорастворимыми, обеспечивается их легкое поступление в межклеточную среду или кровь. Клетками эпидермиса вырабатываются G1, G2 и S кейлоны. При этом, G1- кейлон блокирует переход клетки из периода G1 в S; кейлон G2 задерживает клетки в этом периоде; кейлон S блокирует синтез ДНК. Такие же кейлоны обнаружены в других тканях. Вместе с тем, в тканях вырабатываются антикейлоны, являющиеся ростстимулирующими факторами. В нормальных физиологических условиях между кейлонами и антикейлонами существует определенное равновесие. При нарушении этого равновесия в сторону увеличения концентрации кейлонов нарушаются процессы регенераци тканей, а при выраженном снижении концентрации кейлонов создаются условия для образования злокачественных и доброкачественых новообразований.

Цитокины представляют собой низкомолекулярные полипептиды, вырабатываемые различными клетками (лимфоцитами – лимфокины, макрофагами – монокины и др.). Первоначально было установлено, что они вырабатываются лимфоцитами и макрофагами, а затем выяснилось, что цитокины вырабатываются различными клетками. Однако, в силу того, что почти все цитокины вырабатываются лейкоцитами и действуют на лейкоциты, они были названы интерлейкинами. Цитокины могут оказывать влияние на соседние клетки (паракринное действие), на клетку, продуцирующую этот тканевой гормон ( аутокринное действие) или подобно гормонам могут всасываться в кровь и действовать на клетки, удаленные от места выработки цитокина (эндокринное действие). Цитокины могут усиливать или ингибировать друг друга и даже приводить к формированию нового эффекта. Среди интерлейкинов различают воспалительные, антивоспалительные, факторы, вызывающие рост и дифференцировку лимфоцитов, рост мезенхимальных клеток. Так, ИЛ2 усиливает пролиферацию Т-лимфоцитов, ИЛ4 стимулирует синтез ДНК в В-лимфоцитах, а ИЛ6 усиливает выработку антител В-лимфоцитами. На сегодняшний день известно более 20 видов цитокинов. Важно, что в отличии от гормонов, цитокины пракически не попадают в системную циркуляцию и действуют локально. Цитокины не депонируюся в клетках, а вырабатываются импульсно (по запросу). Цитокины взаимодействуют друг с другом. При этом, воздействие одного цитокина на клетку вызывает выработку этой клеткой других цитокинов (явление цитокинового каскада). Особую группу цитокинов составляют хемокины, являющиеся цитокинами специального назначения: они привлекают в очаг воспаления лимфоциты и лейкоциты из крови.

Факторы роста – это полипептиды, которые стимулируют или ингибируют пролиферацию, хемотаксис и дифференцировку клеток. Факторы роста продуцируются неспециализироваными клетками, находящимися во всех тканях. Достигая своей цели (эндокринной, паракринной, аутокринной или интракринной) они взаимодействуют с рецепторами. Большинство факторов роста оказывают паракринный эффект, достигая цели путем диффузии, или аутокринный эффект. Однако некоторые из них (инсулиноподобный фактор роста) способны оказывать эндокринное действие. Кроме того, известны факторы роста, которые не секретируются и не нуждаются в поверхностных рецепторах: они остаются внутри клетки и действуют непосредствено как внутриклеточные мессенджеры, регулируя клеточные функции. Такой эффект называется интракринным. Наиболее изученными являются инсулиноподобный фактор роста, тромбоцитарный, эпидермальный, фактор роста крови, фактор роста нервов. Инсулиноподобный фактор роста усиливает пролиферацию жировых и соединительнотканных клеток. Тромбоцитарный фактор роста участвует в регуляции процессов острого воспаления, заживления ран и образования рубца. Эпидермальный фактор роста вырабатывается в основном слюнными железами и регулирует процессы пролиферации эпителиальных и эндотелиальных клеток. Этот фактор имеет большое значение в малигнизации клеток и канцерогенезе. Фактор роста крови (эритропоэтин) регулирует процессы эритроцитопоэза. Фактор роста нервов и нервных клеток воздействует на рост, метаболизм холинергических нейронов, стимулирует рост аксонов.

В зависимости от количества, концентрации и комбинации различных факторов роста может меняться интенсивность пролиферативных процессов и дифференцировка. Факторы роста способствуют прохождению клеткой точки рестрикции. При их недостаточности клетка не делится. С возрастом человека происходит старение клетки, что сопровождается снижением ее пролиферативной активности, что обусловлено угнетением выработки факторов роста в тканях. Установлено, что фибробласты плода совершают около 50 делений, у взрослого человека – 40, а у старика – всего 30 делений. В то же время, если в питательную среду без фактора роста поместить эпидермальные клетки, то они совершают около 50 делений, а затем стареют и гибнут. Если же эпидермальные клетки поместить в питательную среду, содержащую фактор роста, то клетки совершают около 150 делений, а затем подвергаются старению.

Онкогены – это гены, кодирующие внутриклеточный белок, обеспечивающий пролиферацию и дифференцировку клеточных популяций.Онкогены могут быть факторами роста или служить рецепторами для факторов роста.

Помимо уровня пролиферативной активности на постоянство количественного и качественного состава клеточных элементов (клеточный гомеостаз) существенное влияние оказывает уровень гибели клеток. В организме клетки могут гибнуть двумя путями: с помощью некроза и апоптоза. Некроз представляет собой длительный процесс гибели клеток на фоне воспалительной реакции.

Апоптоз – это высокорегулируемая форма запрограммированной смерти клетки с характерными морфологическими и биохимическими признаками. Клетки, подвергающиеся такой программированной смерти, активно используют генетически контролируемую программу, нацеленную на собственную гибель, совершая тем самым своего рода суицид. Благодаря апоптозу, из организма удаляются поврежденые, завершившие свой жизненный путь или «нежелательные» клетки, при этом без повреждения клеточного микроокружения. Апоптозу подвергаются клетки, инфицированные вирусами, благодаря чему предотвращается их репликация. Образующиеся в результате апоптоза апоптозные тельца быстро фагоцитируются макрофагами.

В связи с тем, что на всех этапах апоптоза мембраны сохранены, внутриклеточное содержимое не попадает во внеклеточное пространство, чем и объясняется отсутствие нейтрофильной воспалительной реакции. Таким образом, для апоптоза, в отличие от некроза, характерен ряд специфических признаков. Прежде всего, апоптоз протекает очень быстро: всего несколько часов. При апоптозе отсутствует воспалительная реакция, являющаяся характерным маркером некроза. Важной особенностью апоптоза является также то, что несмотря на тяжелые изменения ядер, это активный процесс, требующий от клетки больших затрат энергии. При апоптозе не происходит разрушение биологических мембран, в то время как при некрозе наблюдается разрушение мембран в том числе внутриклеточных, в результате чего высвобождаются лизосомаьные ферменты, которые вызывают лизис цитоплазматических структур, а затем и кариолизис. Апоптоз характеризуется также усилением синтеза РНК и белка, усилением активности ряда внутриклеточных ферментов, в том числе эндонуклеаз, что и ведет к тяжелым изменениям ядерной ДНК с фрагментацией ее на нуклеосомы. Подобные изменения расцениваются как биохимический маркер апоптоза. На этом основаны современные методы ранней морфологической диагностики апоптоза, выявляющие фрагментацию ДНК гистологически и иммунногистохимически.

Инициируют апоптоз многие факторы. К ним относятся различные патогены и токсины, оксидативный стресс, оксид азота, нарушения метаболизма, повреждения ДНК, устранение факторов роста, активация специфических рецепторов, иммунологически опосредованые воздействия.

Важнейшим проапоптозным фактором признан белок р53. Он способен также блокировать синтез ДНК при повреждениях ее, что обеспечивает возможность для репарации и тем самым для предотвращения фиксации генетических повреждений в клонах пролиферирующих клеток. Эти свойства белка р53 объясняют его роль в защите от онкогенных водействий, а мутации р53, которые возникают в большинстве злокачественных опухолей, рассматриваются как один из ведущих факторов канцерогенеза.

Т-лимфоциты также могут вызывать апоптоз двумя путями. Первый реализуется за счет выброса из Т-лимфоцитов гранул перфорина, который образует поры в плазматических мембранах гепатоцитов. Через эти поры в печеночные клетки проникают Т-лимфоцитарные гранулы, которые являются одним из важнейших проапоптозных факторов. Второй путь стимуляции апоптоза с участием Т-лимфоцитов связан с их действием на Fas- антигены, экспрессия которых происходит на поверхности инфицированных гепатоцитов. Fas-антиген принадлежит к большому семейству рецепторов для факторов роста и факторов некроза опухолей. В печени он служит рецептором для Fas-лигандов, которые вырабатываются активированными Т-лимфоцитами. Присоединение лиганда к Fas-рецептору на гепатоцитах служит причиной апоптоза клетки мишени. Fas- антигены обнаружены в печеночных клетках при хронических активных гепатитах, особенно часто в гепатоцитах, окруженных лимфоцитами, так как на их поверхности значительно усилена экспрессия Fas-лигандов.

В клинике внутренних болезней встречаются заболевания, в основе которых лежит либо усиление, либо подавление апоптоза. Так, установлено, что усиление апоптоза обусловливает клинику мышечной атрофии. Кроме того, при СПИДе происходит резкий рост гибнущих лимфоцитов в результате апоптоза, что приводит к лимфопении. Вероятно блокирование апоптоза при СПИДе – реальный путь лечения этого смертельного заболевания.

При нарушении программы клеточной смерти развиваются различные паологические состояния. Так, установлено, что атеросклеротические изменения в сосудах начинаются с бесконтрольной пролиферации гладкомышечных клеток, а уровень их гибели в связи с нарушением программы клеточной смерти очень низок.

Вместе с тем, на регуляцию межклеточных взаимодействий существенное влияние оказывают межклеточные контакты. Существуют многочисленые типы межклеточных контактов. Адгезивные контакты обусловлены наличием в клеточной оболочке особых рецепторов- адгезинов, обусловливающих прилипание одной клетки к поверхности другой. Адгезивные контакты являются очень непрочными. При щелевидном контакте (нексусе) в структуре плазмолеммы двух клеток располагаются специальные белковые комплексы, образующие своеобразные микроканальцы, обеспечивающие перенос ионов и мелких молекул из одной клетки в другую (например, между кардиомиоцитами). Простой контакт – это сближение плазмолемм соседних клеток на расстоянии 15-20нм. В этой зоне располагается вещество с низкой электроной плотностью. Простой контакт обеспечивает транспорт веществ между клетками, поэтому такие контакты можно рассматривать как тканевые микроциркуляторные пути. Простые контакты являются высокодинамичными структурами, так как структура их изменяется при функциональных нагрузках, при дистрофических процессах, при действии метаболических ядов. Разновидностью простого контакта является контакт по типу замка, который является своеобразным резервом контактных поверхностей. Плотный контакт образуется в результате максимального сближения двух плазмолемм и их слияния. Такие соединения выполняют функцию межклеточных барьеров, препятствующих движению веществ (ионов, макромолекул). Кроме того, они обеспечивают прочность контакта. Десмосома представляет контакт двух плазмолемм, когда в области контакта по обе стороны плазмолемм накапливается электронноплотное вещество. Десмосома является самым прочным котактом. Синапс — это разновидность межклеточного контакта, характерная для нервных клеток и специализирующаяся на одностороннем проведении импульса.

источник

Межклеточные взаимодействия в широком смысле слова имеют непосредственное отношение ко всем событиям и процессам, которые превращают многоклеточный организм в целостную систему. Именно они лежат в основе интегративных свойств организма, тонкой сети регуляторных и авторегуляторных процессов. Кроме этого, межклеточные взаимодействия являются одним из механизмов реализации генетической информации в процессе индивидуального развития. По существу основу деятельности иммунной, гуморальной и различных «этажей» нервной системы, составляют различные виды межклеточных взаимодействий. Целостность организма есть результат определенных информационно-материальных взаимодействий между его составными частями (элементами). Поэтому изучать целое – значит познавать не только его составные части, но и информационные и морфофизиологические взаимодействия между ними. Межклеточные контакты играют ключевую роль в формообразовании ткани или органа. По своим функциональным свойствам межклеточные контакты подразделяются:

а) простые межклеточные соединения,

б) интердигитации (пальцевые соединения).

2) Контакты сцепляющего типа:

3) Контакты запирающего типа: плотное соединение (запирающая зона)

4) Контакты коммуникационного типа:

а) щелевидные соединения (нексусы),

Простое межклеточное соединение осуществляется путем сближения плазмолемм клеток до расстояния 15-20нм и взаимодействия белков плазматических мембран – кадгеринов. Имеются разнообразные семейства кадгеринов, характерные для той или иной ткани. Благодаря кадгерину клетки в процессе гистогенеза и органогенеза узнают друг друга и объединяются в единую структуру, например, эпителиальный пласт. (Раковые клетки не узнают друг друга).

Пальцевидные соединения (интердигитации) образуются за счет взаимной инвагинации (впячивания) обеих плазмолемм в начале в одном, а затем в другом. Это один из трех видов контактов между кардиомиоцитами.

Десмосома представляет небольшое округлое образование, построенное с участием плазмолемм соседних клеток. Десмосомы построены из белка десмоплакина, который образует слой на внутренней стороне каждой мембраны. К слою десмоплакина присоединяются пучки промежуточных филаментов.

Промежуточные филаменты в разных тканях представлены разными белками, например, в эпителии – кератином, в мышечной – десмином. С наружной стороны мембраны пространство между десмосомами заполнено утолщенным слоем гликокаликса. Гликокаликс десмосом пронизан склеивающим (адгезивным) белком – десмоглеином.

Адгезивный поясок встречается в однослойных эпителиях, имеет вид двойных лент. По структуре адгезивный поясок похож на десмосому, но образован другими белками.

Плотное соединение образуется с помощью интегральных адгезивных белков. В таких контактах плазмолеммы плотно прилегают друг к другу. Плотные соединения также имеют лентовидную форму. Однако ленты имеют вид ячеистой сети. Плотные контакты надежно разграничивают компартменты, находящиеся с базальной и апикальной (верхушечной) сторон однослойного эпителия. Контакты в виде плотных соединений имеются в эндотелии сосудов.

Рис. Схема расположения десмосом и полудесмосом в эпителиальных клетках тонкого кишечника. Сети кератиновых волокон соседних клеток связаны друг с другом через десмосомы и с базальной мембраной через полудесмосомы. (Из кн. Б. Албертс и др. «Молекулярная биология клетки», том 3.)

источник

В многоклеточном организме все клетки связаны между собой различного рода взаимодействиями. В их основе лежат рецепторно-эффекторные комплексы (РЭК), которые участвуют в регуляции жизнедеятельности клеток и тканей.

Все жизненные акты в процессе жизнедеятельности животных организмов осуществляются в рамках рефлекторных цепей, состоящих из 3-х звеньев: рецепторного, эффекторного и сопрягающего.

На клеточном и субклеточном уровнях информация от рецептора к эффектору передаётся разными путями: контактно, диффузно, электрически по биологическим мембранам, с помощью белковых молекул и др.

В этом плане основная роль принадлежит управляющим сигналам – лигандам (лат. ligarе – связывать), представляющим собой химические молекулы, кванты света, звуковые волны, механические раздражители и т. д. Лиганды связываются со специфическими рецепторами клеток по принципу комплементарности. Лиганды-сигнальные молекулы участвуют в регуляции метаболической и пролиферативной активности клеток.

Сигнальные молекулы вырабатываются различными клетками организма. Так, например, нейтрофилы и лимфоциты вырабатывают сигнальные полипептиды – цитокины (лимфокины, монокины, интерлейкины, интерфероны и колониестимулирующие факторы), которые регулируют рост и дифференцировку клеток тканей. В качестве митогенов могут быть семейства белков эпидермального фактора роста, инсулиноподобного фактора роста, фактора роста фибробластов, фактора роста тромбоцитов и др.

Рецепторы – это высокомолекулярные конформационно-подвижные белковые и нуклеиновые трёхмерные структуры.

Первичные сигналы (энергия стимула) трансформируются рецепторами в конформационный сигнал, который передаётся через сопрягающее звено на эффектор, где осуществляется декодирование поступившего сигнала и образное его восприятие.

В передаче сигналов от клетки к клетке важное значение принадлежит межклеточным контактам (соединениям).

В эпителиальных тканях клетки довольно плотно прилежат друг к другу, образуя пласты, в составе которых различают простые и сложные межклеточные соединения.

1. Простые соединения, когда клетки взаимодействуют своими надмембранными комплексами, а именно слоями гликокаликса. При этом взаимодействие осуществляется с помощью белков-рецепторов – кадгерина, интегрина и др.

2. Сложные соединения представляют собой запирающие, сцепляющие и коммуникационные контакты.

Запирающие (изолирующие) контакты характерны для однослойных эпителиев и эндотелия.

Сцепляющий (заякоривающий) контакт – это адгезивный поясок десмосомы. К участкам плазматических мембран подходят фибриллярные элементы цитоскелета и заякориваются на их поверхности. Адгезивные пояски характерны для однослойных эпителиев: клетки связываются при помощи гликопротеидов, к которым со стороны цитоплазмы примыкает примембранный белок винкулин. Десмосомы с внутренней стороны соединяют слой белков, в состав которых входит десмолактин, а с внешней стороны они соединяются трансмембранными белками – десмоглеинами.

К Заякоривающим соединениям относятся фокальные контакты, например, соединения фибробластов с неклеточным субстратом. Они соединяют актиновые микрофиламенты.

Коммуникационные (объединяющие) контакты – это щелевые соединения (нексусы) и синапсы. Через них осуществляется перенос ионов и мелких молекул от клетки к клетке. Синапсы проводят возбуждение в одну сторону.

источник

Межклеточные взаимодействия чрезвычайно важны в развитии и являются одним из механизмов, обеспечивающих интегрированность развития особи. Этот механизм действует на протяжении всего онтогенеза, но особую значимость имеет на ранних этапах эмбриогенеза, а именно, в период дробления.

Так, уже на 2-клеточной стадии зародыш представляет собой не совокупность отдельных клеток, а единый организм. Это может быть показано с привлечением результатов ряда экспериментов. Немецкий эмбриолог Вильгельм Ру разрушал одну из клеток зародыша лягушки на стадии 2 бластомеров раскаленной иглой. В ходе дальнейшего развития из оставшегося неповрежденными бластомера формировалась только половина зародыша — полунейрула с полным набором структур правой или левой стороны (рис. 8.28). Однако, как известно, на стадии дробления клетки большинства хордовых тотипотентны. И действительно, если повторить описанный эксперимент и сразу отделить убитый бла-стомер от неповрежденного, то из последнего сформируется абсолютно полноценный организм. Аномальное развитие зародыша в опыте В. Ру наблюдалось вследствие контакта бластомеров. Неповрежденный бла-стомер, благодаря наличию межклеточных влияний, «определял» себя только как часть целого организма и развивался в соответствии с полученной информацией. При отделении этого бластомера сигналов к нему от погибшей клетки не поступало, и он давал начало полноценной особи. Таким образом, уже начиная со стадии 2 бластомеров, каждый из них развивается как часть единого организма в соответствии с сигналами, полученными от своего окружения.

Рис. 8.28.Схема эксперимента В. Ру

Межклеточные взаимодействия — основной механизм дифференци-ровки клеток зародышей, характеризующихся регуляционным типом развития. Однако у организмов с ярко выраженным мозаичным типом развития также осуществляются подобные взаимодействия между бла-стомерами. Так, у оболочников только две пары передних бластомеров 8-клеточного зародыша способны образовывать нервную систему, однако развитие нейральных структур возможно лишь при контакте этих двух пар клеток между собой. Если же эти пары бластомеров разобщить, то формирования нервных клеток не происходит.

Внешние сигналы, поступающие прямо или опосредованно от других клеток организма, а также от структур внеклеточного матрикса, играют решающую роль в выборе клеткой направления дифференцировки. Именно такой путь обеспечивает гибкую и тонкую пространственно-временную координацию дифференцировок, без чего невозможно нормальное развитие.

Воздействовать друг на друга клетки могут следующими способами. Во-первых, формируя межклеточные контакты, во-вторых, за счет диффузии веществ от одной клетки к другой, в-третьих, в результате контакта между клеткой и матриксом, сформированным другими клетками (рис. 8.29). При этом могут наблюдаться обмен молекулами, изменение в межклеточной среде концентрации ионов, выделение продуктов жизнедеятельности, электрические и механические взаимодействия. Было продемонстрировано, например, что на поздних стадиях дробления между клетками зародыша шпорцевой лягушки передаются электрические импульсы. После электрического разобщения клеток дальнейшее развитие нарушается.

Рис. 8.29.Возможные варианты межклеточных взаимодействий

Остановимся на значении межклеточных контактов для дифферен-цировки.

Давно обнаружено, что одиночные эмбриональные клетки дифференцируются плохо, тогда как контакты с соседними клетками существенно активируют этот процесс. Явление получило название «эффект коммунальности». В некоторых случаях увеличение числа клеток в развивающемся фрагменте может привести к расширению спектра его возможных дифференцировок. Так, если срастить вместе несколько дорсальных губ бластопора ранней гаструлы тритона, то возникнет более обширный набор осевых зачатков, нежели из одной губы.

Напротив, даже кратковременное нарушение межклеточных контактов существенно ограничивает возможности дальнейшего развития этого фрагмента. Например, у амфибий в период гаструляции даже кратковременное (на несколько десятков секунд) разобщение клеток хордоме-зодермы приводит к изменению их возможностей к дифференцировке. Нарушение контактов между дифференцированными клетками взрослого организма может привести к утрате их дифференцированного состояния, а в некоторых случаях — к злокачественному перерождению.

Яркие примеры влияния межклеточных взаимодействий на процесс клеточной специализации можно наблюдать в ходе дробления.

В эксперименте было показано, что у прудовика, развитие которого мозаично, бластомер 3D во время паузы в дроблении на стадии 24 бластомеров увеличивает число своих соседей с 6 до 24. Одно из ближайших последствий «катастрофы связности» состоит в том, что меняются характеристики клеточного цикла этого бластомера, и он делится неодновременно со всеми остальными, имеющими по 5-6 соседей. Вероятно, именно благодаря этому потомки только данной клетки дают начало всей мезодерме и развивающимся из нее структурам.

В ходе дробления мыши на стадии 8-клеточного зародыша происходит его компактизация. Рыхло расположенные клетки внезапно сближаются, площадь контактов между ними увеличивается, и они образуют компактный клеточный шар. В результате более тесного прилегания друг к другу бластомеры изменяют свою форму от сферической до уплощенной, при этом контур зародыша сглаживается (рис. 8.30). Между уплощающимися клетками, расположенными на поверхности, возникают плотные контакты, и этот слой изолирует внутренние клетки округлой формы, связанные между собой щелевыми контактами.

Рис. 8.30.Компактизация и образование бластоцисты: а — ранний 8-клеточ-ный зародыш; б — 8-клеточный зародыш после компактизации; в — морула (32 клетки); г — бластоциста; д — микрофотографии 8-клеточного зародыша мыши (сканирующая электронная микроскопия): д1 — до компактизации; д2— после компактизации. I — компактизация; II — кавитация. 1 — плотные контакты; 2 — щелевые контакты; 3 — внутренняя клетка; 4 — наружная клетка; 5 — клетка трофобласта; 6 — клетка эмбриобласта; 7 – бластоцель

Большая часть потомков наружных клеток, соединенных плотными контактами, становится клетками трофобласта и участвует в образовании плодной части плаценты. Потомки внутренних клеток, объединенных щелевыми контактами, образуют эмбриобласт, который даст начало зародышу и ряду внезародышевых структур, таких как амнион, аллантоис, желточный мешок. Клетки эмбриобласта отличаются от клеток трофобласта не только по своему виду, но и по спектру белков, которые они синтезируют. Таким образом, возникновение различий между этими двумя группами клеток является ранним процессом дифференцировки в развитии млекопитающих, и базирующимся на межклеточных взаимодействиях.

Щелевым контактам принадлежит особая роль в межклеточных взаимодействиях. Это специфические области, где плазматическая мембрана одной клетки вступает в тесный контакт с плазматической мембраной другой клетки. У большинства зародышей по крайней мере ранние бла-стомеры связаны именно такими контактами, в результате чего небольшие растворимые молекулы и ионы свободно проходят между ними. Показано, что щелевые контакты формируются в точно определенное время, когда возникает необходимость передачи информации от одного бластомера другому.

О значении этих контактов в развитии можно судить по результатам опытов, выполненных на зародышах амфибий и млекопитающих. Когда в один из бластомеров 8-клеточного зародыша амфибии путем микроинъекции вводили антитела к белкам щелевых контактов, то потомки этой клетки не могли обмениваться молекулами веществ с соседними бластомерами. Головастики, развившиеся из обработанных таким способом зародышей, оказались дефектными, и эти дефекты развития были прямо связаны с судьбой инъецированной клетки. Потомки такой клетки не погибали, но оказывались неспособными следовать по нормальному пути развития.

Контактные взаимодействия между клетками важны для дифферен-цировки на всех стадиях развития — от самых ранних и до взрослого состояния.

Обнаружено, что при формировании сложных фасеточных глаз у дрозофилы межклеточные взаимодействия распространяются по эмбриональной ткани в виде волны. Области образующихся межклеточных контактов имеют разную форму. Установлено, что дифференцировка клеток зависит от геометрии их контактных зон с соседними клетками. Клетки с одинаковой формой контактов дифференцируются в одном и том же направлении. Среди всех остальных выявляется одна фоторе-цепторная клетка, которая отличается от других по этому показателю. Именно она может воспринимать ультрафиолетовую область спектра.

Таким образом, межклеточные взаимодействия важны для развития организма и его целостности, особенно в период дробления. Начиная со стадии бластулы, ведущим интегрирующим механизмом онтогенеза становится эмбриональная индукция.

Дата добавления: 2015-07-13 ; Просмотров: 825 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Межклеточные взаимодействия подразделяют на 2 класса — формообразующие (формирующие тканевые и органные структуры, или структурирующие) и информационные. Оба класса межклеточных взаимодействий реализуются при помощи растворимых молекул (или ионов), посредством макромолекул внеклеточного матрикса и путём формирования специализированных межклеточных контактов .

Межклеточные взаимодействия имеют определяющее значение для существования и развития многоклеточного организма. Взаимодействия эти в высокой степени специфичны в смысле контактов клеток определенного сорта. В результате взаимодействий клеток возникают тканевые структуры. Нарушения этого типамежклеточных взаимодействий приводят к появлению опухолей, способствуют преждевременному старению и другим болезненным процессам. Информационные макромолекулы, обеспечивающиемежклеточные взаимодействия, могут транспортироваться в организме и с током крови. Однако, как правило, они переносятся клетками крови — эритроцитами, лейкоцитами, тромбоцитами.

25. Понятие об основных биологических процессах, определяющих формирование живого организма (пролиферация, рост, дифференцировка, детерминация, индукция, интеграция, пространственное перераспределение клеточных элементов).

Пролифера́ция новообразование клеток и внутриклеточных структур (митохондрий, эндоплазматической сети, рибосом идр.). Лежит в основе роста и дифференцировки тканей, обеспечивает непрерывное обновление структурорганизма. П. различных клеток иммунокомпетентной системы является основой иммуногенеза. Спомощью П. ликвидируется образовавшийся при повреждении тканей дефект и нормализуется нарушеннаяфункция

Дифференциация — это стойкое структурно-функциональное преобразование клеток в различные специализированные клетки. Дифференцировка клеток биохимически связана с синтезом специфических белков, а цитологически — с образованием специальных органелл и включений. При дифференцировке клеток происходит избирательная активация генов. Важным показателем клеточной дифференцировки является сдвиг ядерно-цитоплазменного отношения в сторону преобладания размеров цитоплазмы над размером ядра. Дифференцировка происходит на всех этапах онтогенеза. Особенно отчетливо выражены процессы дифференциации клеток на этапе развития тканей из материала эмбриональных зачатков. Специализация клеток обусловлена их детерминацией.

Детерминация — это процесс определения пути, направления, программы развития материала эмбриональных зачатков с образованием специализированных тканей. Детерминация может быть оотипической (программирующей развитие из яйцеклетки и зиготы организма в целом), зачатковой (программирующей развитие органов или систем, возникающих из эмбриональных зачатков), тканевой (программирующей развитие данной специализированной ткани) и клеточной (программирующей дифференцировку конкретных клеток). Различают детерминацию: 1) лабильную, неустойчивую, обратимую и 2) стабильную, устойчивую и необратимую. При детерминации тканевых клеток происходит стойкое закрепление их свойств, вследствие чего ткани теряют способность к взаимному превращению (метаплазии). Механизм детерминации связан со стойкими изменениями процессов репрессии (блокирования) и экспрессии (деблокирования) различных генов.

Индукция— это влияние одних структур на прилегающие к ним другие. Индукторами могут быть самые обычные факторы, такие как питательные вещества или кислород, уровень рН, оп­ределенная концентрация солей, так и на более поздних ста­диях развития — гормоны, медиаторы и множество еще не уста­новленных химических веществ.

Поведение каж­дой клетки обусловлено специфическими интеграционными связя­ми между клетками, которые возникают в ходе развития орга­низма в определенных условиях существования, при непрерывно меняющихся условиях целостности. Как только в результате дробления возникают два первых бластомера, каждый из них становится неразрывной частью новой биологической системы, и его поведение определяется этой системой. Каждая стадия раз­вития организма есть новое состояние целостности, интеграции.

ЭМБРИОЛОГИЯ.

Понятие о прогенезе и эмбриогенезе. Периоды и основные стадии эмбриогенеза у человека. Половые клетки человека, их структурно-генетическая характеристика. Отличие половых клеток от соматических.

ЭМБРИОГЕНЕЗ –эмбриональное развитие человека. Продолжается 280 дней, делится на три периода: начальный (первая неделя развития), зародышевый (2-8 неделя развития – закладка основных органов), плодный (9неделя – до рождения).

Ранний эмбриогенез делится на стадии:

1.ЗИГОТА – начало синтеза ДНК и белка

2.ДРОБЛЕНИЕ – начало синтеза основных типов РНК

3.МОРУЛА – клетки зародыша тотипотентны (взаимозаменяемы)

4.БЛАСТОЦИСТА – происходит утрата тотипотентности и клетки детерминируются к образованию зародышевых и внезародышевых структур.

5.ГАСТРУЛА – появляются зародышевые листки и стволовые клетки

6.ОРГАНОГЕНЕЗ – из ткани формируются органы, идет формирование зачатков органов из клеточных клонов

ПРОГЕНЕЗ –период развития и созревания половых клеток – яйцеклеток и сперматозоидов, в результате в зрелых половых клетках возникает гаплоидный набор хромосом, формируются структуры, обеспечивающие их способность к оплодотворению и развитию нового организма.

ПОЛОВЫЕ КЛЕТКИ – ПРИЗНАКИ:

· Гаплоидный набор хромосом

· Измененная ядерно-цитоплазматическое отношение – отношение объема ядра и цитоплазма

· Изменен метаболизм клетки

· Клетки высоко дифференцированы (не способны делиться)

ЯЙЦЕКЛЕТКА (открыта Бером) – имеет оолемму, ооплазму (цитоплазму), ядро; органоиды развиты все за исключением центриолей, из включений преобладает желток.

ФИЗИОЛОГИЧЕСКИЕ ОСОБЕННОСТИ: ядро неактивно ни в отношении транскрипции, ни в отношении репликации, т.е. ведет себя пассивно; яйцеклетка накапливает ферменты, факторы и гликоген.

СТРУКТУРНЫЕ ОСОБЕННОСТИ: имеет кортикальный слой цитоплазмы – периферическая гиалоплазма с кортикальными гранулами (мукополисахариды, белки, ферменты); полярна – выделяют два полюса: анимальный (сосредоточены органоиды) и вегитативный (содержит количество белка)

У человека маложелтковая, вторичноолиголецитальная, изолецитальная

Яйцеклетку окружают прозрачная (лецитальная) оболочка – zona pellucida (ее образуют Zp белки). Среди них есть Zp2 белок – препятствует полиспермии, Zp3 рецептор к сперматозоиду.

Яйцеклетка окружена фолликулярными клетками, которые доставляют к ней питание – формируют лучистый венец.

СПЕРМАТОЗОИД –выделяют четыре отдела: головка (содержит крупное ядро и акросому – видоизмененная лизосома), шейка(проксимальная центриоль), тело (митохондриальные спирали и дистальная центриоль), хвостик (представлен жгутиком)

Максимальная способность к оплодотворению до двух суток.

Направленная миграция сперматозоидов определяется хемотаксисом и реотаксисом, важными показателями при этом являются рН и слизь. Происходит капоцитация – под действием секретов женских половых путей сперматозоид приобретают оплодотворяющие способности.

Продвижение сперматозоида облегчают простогландины (действуют на оболочку маточных труб)

Не нашли, что искали? Воспользуйтесь поиском:

источник

Молекулярное узнавание в биологических системах реали­зуется не только на уровне самих молекул, но и на уровне над­молекулярных клеточных структур.

Межклеточные взаимодействия имеют определяющее значе­ние для существования и развития многоклеточного организма. Взаимодействия эти в высокой степени специфичны в смысле контактов клеток определенного сорта. Они имеют динамиче­ский характер — направленные перемещения клеток ответст­венны за морфогенетическое развитие организма (см. § 9.9). В результате взаимодействий клеток возникают тканевые струк­туры.

Можно считать установленным, что межклеточные взаимо­действия осуществляются посредством молекулярных, химиче­ских сигналов [61, 62]. Это доказывается, в частности, прямыми опытами, в которых взаимодействие клеток нарушалось введе­нием между ними кусочка целлофана. При замене целлофана полосками агара, через который могут проходить более круп­ные молекулы, взаимодействие восстанавливалось.

Еще в 1907 г. Уилсон показал, что разделенные клетки мор­ской губки объединяются вновь при помещении в морскую воду, причем образуются вполне сформировавшиеся маленькие губ­ки. Позднее было установлено, что такого рода регенерация ви — доспецифична — из смеси клеток, принадлежавших губкам раз­ных видов, образуются разные виды губок. Сходные явления наблюдаюі-ся и у клеток гораздо более сложных организмов [62, 63].

Очевидно, что такого рода узнавание, приводящее к упоря­дочению клеток, требует молекулярной сигнализации, контакта и адгезии клеточных поверхностей.

Прямые опыты показывают, что при контакте и взаимодей­ствии клеток происходит резкое увеличение проницаемости кле­точных мембран [64]. Наличие межклеточной коммуникации до­казывается прохождением малых неорганических ионов (в ча­стности, Са++) из одной клетки в другую. Установлено также, что сравнительно большие молекулы флуоресцирующих краси — телей способны переходить из клетки в клетку, если между клет­ками имеется функциональный контакт.

Образованию контакта предшествует химическая сигнализа­ция между клетками. Сигнализация осуществляется, по-види­мому, путем выделения в окружающую среду веществ, являю­щихся факторами агрегации, узнаваемых клетками. Эти ве­щества специфичны для сорта ткани, но не для вида. Если поместить в один и тот же сосуд клетки зародыша мыши и за­родыша цыпленка, принадлежащие к разным тканям, то обра­зуются раздельные скопления клеток. Если же смешать клетки, взятые у зародышей двух разных видов, но принадлежащие одной и той же ткани, то образуется единое скопление [61].

В некоторых случаях удалось выделить эти сигнальные ве­щества ([65], см. также [66]). Они представляют собой глико — протеидные частицы, содержащие 47% аминокислот и 49% са­хара. Константа седиментации равна 62,5S. Частицы имеют вид сфер диаметром 800 А, снабженных рядом радиальных отрост­ков длиною 1100 А и толщиною 45 А. Таким образом, частица обладает достаточно сложной структурой, функциональность которой пока остается неизвестной.

Перемещение клеток, приводящее к их сортировке, можно объяснять различными способами [62]. Первая гипотеза исходит из представления о хемотаксисе — о миграции клеток опреде­ленного типа по направлению к сигнальному веществу, обра­зуемому только клетками этого типа. Вторая гипотеза исходит из предположения о том, что поверхность клетки изменяется под влиянием диспергирующих агентов. Ее изменение приводит к появлению механической активности, клетки приобретают подвижность и беспорядочно движутся в агрегате до тех пор, пока не восстановится прежняя структура их поверхности. При этом возрастает их адгезивность. В таком случае все клетки одного типа будут постепенно накапливаться в кортикальной области агрегата и оттеснять другие клетки к его середине. Третья гипотеза исходит из дифференциальной адгезивности клеток. Сегрегация обусловлена случайными движениями и ко­личественными различиями в адгезивности клеток. Проблема сводится к рассмотрению термодинамического равновесия в об­разующейся системе. Экспериментальные данные лучше всего объясняются третьей гипотезой. Однако нельзя считать, что мы располагаем сейчас сколько-нибудь полной теорией рассматри­ваемых явлений. Приведенные факты свидетельствуют о специ­фической химической сигнализации между клетками, о направ­ленных механохимических процессах и о специфических кон­тактных взаимодействиях, определяемых свойствами клеточных мембран. Узнавание на клеточном уровне является сложным процессом и влечет за собой ряд явлений биоэнергетического характера. Сколько-нибудь полную физическую теорию этих явлений пока нельзя построить, так как имеющиеся биохимиче­ские сведения для этого недостаточны. Однако предложен ряд моделей, полезных для дальнейшего развития теории.

В работах [67, 68] предложена теория самосортировки кле­ток, исходящая из того, что подвижность и дифференцированная адгезивность достаточны для такого процесса. Предполагается, что конечная конфигурация, образуемая клетками, отвечает ми­нимуму свободной энергии их поверхностей. Аналогом такой си­стемы являются капли несмешивающихся жидкостей. Построена двумерная решеточная модель, «клетки» решетки моделируют живые клетки или среду. Вводится величина энергии контакта клеток. Модель, оперирующая изотропными клетками, пред­ставляет упорядоченные структуры, не имеющие, однако, био­логических аналогов [67]. Напротив, в подобных же модельных системах, содержащих анизотропные клетки, оказывается воз­можным возникновение аналогов биологических структур [68].

В работе [69] спонтанная сегрегация клеток из смешанных агрегатов исследуется на той же основе адгезивности. Рассмат­ривается детализированная модель межмолекулярных взаимо­действий, в которой энергия взаимодействия одинаковых кле­точных поверхностей отличается от таковой для разных поверх­ностей. Теория подобна теории разделения несмешиваемых жидкостей.

В указанных исследованиях отсутствуют представления о специфической межклеточной сигнализации. В работе [70] по­казано, что система клеток, притягивающихся друг к другу по­средством хемотаксиса, в ответ на испускаемые ими сигналы может агрегировать. Агрегация инициируется случайными флук — туациями. Если сигнализация кооперативна, то агрегация при­водит к характеристическому потоку, подобному наблюдаемому у некоторых миксомицетов. Эта работа представляет существен­ный интерес.

Было проведено детальное экспериментальное исследование агрегации эмбриональных клеток цыпленка [121]. Удалось выде­лить макромолекулярные факторы, способствующие агрегации, и ввести в них меченые атомы. Оказалось, что эти вещества специфически связываются определенными тканями. На кле­точных поверхностях имеются, по-видимому, специфические рецепторы, узнающие факторы, промотирующие агрегацию. Ки­нетика связывания свидетельствует о его кооперативном харак­тере. Идентификация этих факторов и дальнейшие физико-хи — мические исследования должны привести к выяснению физиче­ских основ клеточной агрегации.

Эдельман предложил интересную гипотезу о природе взаим­ного узнавания клеток, их движения, а также роста тканей, основанную на поверхностной модуляции [143]. Согласно этой гипотезе поверхности клеток данного типа содержат молекулы специфических гликопротеидов. Последние расщепляются опре­деленными протеазами, и остающиеся на поверхностях фраг­менты узнают друг друга. Таким образом, состояние поверх­ности модулируется протеазами, которые, тем самым, управ­ляют адгезией клеток в развивающихся тканях. Указан­ные гликопротеиды являются молекулами, ответственными за ассоциацию клеток. Эдельман отмечает общность разнооб­разных явлений модуляции поверхности: связи AT—АГ, при­соединение вирусов, взаимодействия клеток с гормонами, вза­имодействия сперматозоида с яйцеклеткой и т. д. Гипотеза Эдельмана важна и может служить основой для дальнейших исследований.

Отметим, что представление о существенной функции про­теаз согласуется с фактами, установленными в совсем иной области биологии. Александров показал, что имеется корреля­ция между теплоустойчивостью белков ряда организмов и теп- лолюбивостью этих организмов. Так, ареал травяной лягушки (Ratia temporaria) простирается от 43° до 70° с. ш., ареал озер­ной лягушки (/?. ridibunda) —от 40° до 60° с. ш. Температура денатурации ряда белков озерной лягушки на несколько граду­сов выше, чем травяной. Конечно, эти температуры существенно выше физиологических. Александров убедительно объяснил эти и подобные им эффекты соответствием между генотипически обусловленным уровнем теплоустойчивости белков и средней температурой существования вида [144]. Известно, что протеолиз хорошо коррелирует с денатурацией. Важнейшая роль протеаз, предполагаемая Эдельманом, конкретизирует объяснение фак­тов, открытых Александровым.

Следует подчеркнуть, что распространенные в литературе представления о том, что специфическое взаимодействие сход­ных надмолекулярных и клеточных структур определяется спе­цифичностью микро — или макроскопических межмолекулярных сил, нельзя считать убедительными. Эти представления вводи­лись вначале для объяснения синапсиса хромосом — один из создателей квантовой механики Иордан считал, что между тож­дественными участками двух гомологичных хромосом действуют квантовомеханические резонансные силы [122, 123]. В дальней­шем. Джеле рассмотрел специфическое дисперсионное взаимо­действие ([124, 125]; см. также [126, 127]). Однако трудно ожи­дать существенных различий во взаимодействии структур, по­строенных из сходных биополимеров, и дисперсионные силы в этих случаях не могут обладать специфичностью. Более подроб­ная критика этих представлений приведена в книге «Молекулы и жизнь» (см. [76], стр. 416—419).

На уровне организма в целом важнейшее значение имеет химическая сигнализация посредством гормонов, регулирую­щих поведение ряда систем, образующих организм. Гормоны во многих случаях воздействуют не только на клеточные мембра­ны, но непосредственно влияют на гены, на ДНК и, тем самым, участвуют в регуляции белкового синтеза (см. ниже и [71]). Так, гормон альдостерон регулирует прохождение ионов Na+ и К+ че­рез клеточные мембраны. С помощью радиоактивной метки по­казано, что альдостерон проникает в клеточное ядро. Через неко­торое время после того, как концентрация альдостерона стала внутри клетки максимальной, перемещение ионов через мем­брану усиливается. Это происходит вследствие усилившегося синтеза специфического белка. Действительно, если клетки предварительно обработаны антибиотиком пуромицином, то гормон своего действия не оказывает. Между тем известно, что пуромицин блокирует действие генов, препятствует биосинтезу белка.

Активность гормонов связана во многих случаях с функцио­нированием важного сигнального вещества живых клеток — циклической АМФ (см. ниже).

Все изложенное подтверждает общие положения современ­ной биологии, согласно которым живой организм следует трак­товать как весьма сложную химическую машину. Процессы сигнализации, регуляции, управления в такой машине реали­зуются посредством молекул на основе молекулярного узна­вания.

источник