Таблица химические вещества клетки и их значение

Клетка – элементарная единица жизни на Земле. Она обладает всеми признаками живого организма: растет, размножается, обменивается с окружающей средой веществами и энергией, реагирует на внешние раздражители. Начало биологической эволюции связано с появлением на Земле клеточных форм жизни. Одноклеточные организмы представляют собой существующие отдельно друг от друга клетки. Тело всех многоклеточных – животных и растений – построено из большего или меньшего числа клеток, которые являются своего рода блоками, составляющими сложный организм. Независимо от того, представляет ли собой клетка целостную живую систему – отдельный организм или составляет лишь его часть, она наделена набором признаков и свойств, общим для всех клеток.

В клетках обнаружено около 60 элементов периодической системы Менделеева, встречающихся и в неживой природе. Это одно из доказательств общности живой и неживой природы. В живых организмах наиболее распространены водород, кислород, углерод и азот, которые составляют около 98% массы клеток. Такое обусловлено особенностями химических свойств водорода, кислорода, углерода и азота, вследствие чего они оказались наиболее подходящими для образования молекул, выполняющих биологические функции. Эти четыре элемента способны образовывать очень прочные ковалентные связи посредством спаривания электронов, принадлежащих двум атомам. Ковалентно связанные атомы углерода могут формировать каркасы бесчисленного множества различных органических молекул. Поскольку атомы углерода легко образуют ковалентные связи с кислородом, водородом, азотом, а также с серой, органические молекулы достигают исключительной сложности и разнообразия строения.

Кроме четырех основных элементов в клетке в заметных количествах (10 ые и 100 ые доли процента) содержатся железо, калий, натрий, кальций, магний, хлор, фосфор и сера. Все остальные элементы (цинк, медь, йод, фтор, кобальт, марганец и др.) находятся в клетке в очень малых количествах и поэтому называются микроэлементами.

Химические элементы входят в состав неорганических и органических соединений. К неорганическим соединениям относятся вода, минеральные соли, диоксид углерода, кислоты и основания. Органические соединения – это белки, нуклеиновые кислоты, углеводы, жиры (липиды) и липоиды.

Некоторые белки содержат серу. Составной частью нуклеиновых кислот является фосфор. Молекула гемоглобина включает железо, магний участвует в построении молекулы хлорофилла. Микроэлементы, несмотря на крайне низкое содержание в живых организмах, играют важную роль в процессах жизнедеятельности. Йод входит в состав гормона щитовидной железы – тироксина, кобальт – в состав витамина В12 гормон островковой части поджелудочной железы – инсулин – содержит цинк. У некоторых рыб место железа в молекулах пигментов, переносящих кислород, занимает медь.

Н2О – самое распространенное соединение в живых организмах. Содержание ее в разных клетках колеблется в довольно широких пределах: от 10% в эмали зубов до 98% в теле медузы, но среднем она составляет около 80% массы тела. Исключительно важная роль воды в обеспечении процессов жизнедеятельности обусловлена ее физико-химическими свойствами. Полярность молекул и способность образовывать водородные связи делают воду хорошим растворителем для огромного количества веществ. Большинство химических реакций, протекающих в клетке, может происходить только в водном растворе. Вода участвует и во многих химических превращениях.

Общее число водородных связей между молекулами воды изменяется в зависимости от t°. При t° таяния льда разрушается примерно 15% водородных связей, при t° 40°С – половина. При переходе в газообразное состояние разрушаются все водородные связи. Этим объясняется высокая удельная теплоемкость воды. При изменении t° внешней среды вода поглощает или выделяет теплоту вследствие разрыва или новообразования водородных связей. Таким путем колебания t° внутри клетки оказываются меньшими, чем в окружающей среде. Высокая теплота испарения лежит в основе эффективного механизма теплоотдачи у растений и животных.

Вода как растворитель принимает участие в явлениях осмоса, играющего важную роль в жизнедеятельности клетки организма. Осмосом называют проникновение молекул растворителя через полупроницаемую мембрану в раствор какого-либо вещества. Полупроницаемыми называются мембраны, которые пропускают молекулы растворителя, но не пропускают молекулы (или ионы) растворенного вещества. Следовательно, осмос – односторонняя диффузия молекул воды в направлении раствора.

Большая часть неорганических в-в клетки находится в виде солей в диссоциированном, либо в твердом состоянии. Концентрация катионов и анионов в клетке и в окружающей ее среде неодинакова. В клетке содержится довольно много К и очень много Nа. Во внеклеточной среде, например в плазме крови, в морской воде, наоборот, много натрия и мало калия. Раздражимость клетки зависит от соотношения концентраций ионов Na + , K + , Ca 2+ , Mg 2+ . В тканях многоклеточных животных К входит в состав многоклеточного вещества, обеспечивающего сцепленность клеток и упорядоченное их расположение. От концентрации солей в большой мере зависят осмотическое давление в клетке и ее буферные свойства. Буферностью называется способность клетки поддерживать слабощелочную реакцию ее содержимого на постоянном уровне. Буферность внутри клетки обеспечивается главным образом ионами Н2РО4 и НРО4 2- . Во внеклеточных жидкостях и в крови роль буфера играют Н2СО3 и НСО3 — . Анионы связывают ионы Н и гидроксид-ионы (ОН — ), благодаря чему реакция внутри клетки внеклеточных жидкостей практически не меняется. Нерастворимые минеральные соли (например, фосфорнокислый Са) обеспечивает прочность костной ткани позвоночных и раковин моллюсков.

Среди органических веществ клетки белки стоят на первом месте как по количеству (10 – 12% от общей массы клетки), так и по значению. Белки представляют собой высокомолекулярные полимеры (с молекулярной массой от 6000 до 1 млн. и выше), мономерами которых являются аминокислоты. Живыми организмами используется 20 аминокислот, хотя их существует значительно больше. В состав любой аминокислоты входит аминогруппа (-NH2), обладающая основными свойствами, и карбоксильная группа (-СООН), имеющая кислотные свойства. Две аминокислоты соединяются в одну молекулу путем установления связи HN-CO с выделением молекулы воды. Связь между аминогруппой одной аминокислоты и карбоксилом другой называется пептидной. Белки представляют собой полипептиды, содержащие десятки и сотни аминокислот. Молекулы различных белков отличаются друг от друга молекулярной массой, числом, составом аминокислот и последовательностью расположения их в полипептидной цепи. Понятно поэтому, что белки отличаются огромным разнообразием, их количество у всех видов живых организмов оценивается числом 10 10 – 10 12 .

Цепь аминокислотных звеньев, соединенных ковалентное пептидными связями в определенной последовательности, называется первичной структурой белка. В клетках белки имеют вид спирально закрученных волокон или шариков (глобул). Это объясняется тем, что в природном белке полипептидная цепочка уложена строго определенным образом в зависимости от химического строения входящих в ее состав аминокислот.

Вначале полипептидная цепь сворачивается в спираль. Между атомами соседних витков возникает притяжение и образуются водородные связи, в частности, между NH- и СО- группами, расположенными на соседних витках. Цепочка аминокислот, закрученная в виде спирали, образует вторичную структуру белка. В результате дальнейшей укладки спирали возникает специфичная для каждого белка конфигурация, называемая третичной структурой. Третичная структура обусловлена действием сил сцепления между гидрофобными радикалами, имеющимися у некоторых аминокислот, и ковалентными связями между SH- группами аминокислоты цистеина (S-S- связи). Количество аминокислот гидрофобными радикалами и цистеина, а также порядок их расположения в полипептидной цепочке специфичны для каждого белка. Следовательно, особенности третичной структуры белка определяются его первичной структурой. Биологическую активность белок проявляет только в виде третичной структуры. Поэтому замена даже одной аминокислоты в полипептидной цепочке может привести к изменению конфигурации белка и к снижению или утрате его биологической активности.

В некоторых случаях белковые молекулы объединяются друг с другом и могут выполнять свою функцию только в виде комплексов. Так, гемоглобин – это комплекс из четырех молекул и только в такой форме способен присоединять и транспортировать О. подобные агрегаты представляют собой четвертичную структуру белка. По своему составу белки делятся на два основных класса – простые и сложные. Простые белки состоят только из аминокислот нуклеиновые кислоты (нуклеотиды), липиды (липопротеиды), Ме (металлопротеиды), Р (фосфопротеиды).

Функции белков в клетке чрезвычайно многообразны. Одна из важнейших – строительная функция: белки участвуют в образовании всех клеточных мембран и органоидов клетки, а также внутриклеточных структур. Исключительно важное значение имеет ферментативная (каталитическая) роль белков. Ферменты ускоряют химические реакции, протекающие в клетке, в 10 ки и 100 ни миллионов раз. Двигательная функция обеспечивается специальными сократительными белками. Эти белки участвуют во всех видах движений, к которым способны клетки и организмы: мерцание ресничек и биение жгутиков у простейших, сокращение мышц у животных, движение листьев у растений и др. Транспортная функция белков заключается в присоединении химических элементов (например, гемоглобин присоединяет О) или биологически активных веществ (гормонов) и переносе их к тканям и органам тела. Защитная функция выражается в форме выработки особых белков, называемых антителами, в ответ на проникновение в организм чужеродных белков или клеток. Антитела связывают и обезвреживают чужеродные вещества. Белки играют немаловажную роль как источники энергии. При полном расщеплении 1г. белков выделяется 17,6 кДж (

Углеводы, или сахариды – органические вещества с общей формулой (СН2О)n. У большинства углеводов число атомов Н вдвое больше числа атомов О, как в молекулах воды. Поэтому эти вещества и были названы углеводами. В живой клетке углеводы находятся в количествах, не превышающих 1-2, иногда 5% (в печени, в мышцах). Наиболее богаты углеводами растительные клетки, где их содержание достигает в некоторых случаях 90% от массы сухого вещества (семена, клубни картофеля и т.д.).

Углеводы бывают простые и сложные. Простые углеводы называются моносахаридами. В зависимости от числа атомов углевода в молекуле моносахариды называются триозами, тетрозами, пентозами или гексозами. Из шести углеродных моносахаридов – гексоз – наиболее важное значение имеют глюкоза, фруктоза и галактоза. Глюкоза содержится в крови (0,1-0,12%). Пентозы рибоза и дезоксирибоза входят в состав нуклеиновых кислот и АТФ. Если в одной молекуле объединяются два моносахарида, такое соединение называется дисахаридом. Пищевой сахар, получаемый из тростника или сахарной свеклы, состоит из одной молекулы глюкозы и одной молекулы фруктозы, молочный сахар – из глюкозы и галактозы.

Сложные углеводы, образованные многими моносахаридами, называются полисахаридами. Мономером таких полисахаридов, как крахмал, гликоген, целлюлоза, является глюкоза. Углеводы выполняют две основные функции: строительную и энергетическую. Целлюлоза образует стенки растительных клеток. Сложный полисахарид хитин служит главным структурным компонентом наружного скелета членистоногих. Строительную функцию хитин выполняет и у грибов. Углеводы играют роль основного источника энергии в клетке. В процессе окисления 1 г. углеводов освобождается 17,6 кДж (

4,2 ккал). Крахмал у растений и гликоген у животных откладываются в клетках и служат энергетическим резервом.

Значение нуклеиновых кислот в клетке очень велико. Особенности их химического строения обеспечивают возможность хранения, переноса и передачи по наследству дочерним клеткам информации о структуре белковых молекул, которые синтезируются в каждой ткани на определенном этапе индивидуального развития. Поскольку большинство свойств и признаков клеток обусловлено белками, то понятно, что стабильность нуклеиновых кислот – важнейшее условие нормальной жизнедеятельности клеток и целых организмов. Любые изменения структуры клеток или активности физиологических процессов в них, влияя, таким образом, на жизнедеятельность. Изучение структуры нуклеиновых кислот имеет исключительно важное значение для понимания наследования признаков у организмов и закономерностей функционирования, как отдельных клеток, так и клеточных систем – тканей и органов.

Существуют 2 типа нуклеиновых кислот – ДНК и РНК. ДНК – полимер, состоящий из двух нуклеотидных спиралей, заключенных так, что образуется двойная спираль. Мономеры молекул ДНК представляют собой нуклеотиды, состоящие из азотистого основания (аденина, тимина, гуанина или цитозина), углевода (дезоксирибозы) и остатка фосфорной кислоты. Азотистые основания в молекуле ДНК соединены между собой неодинаковым количеством Н-связей и располагаются попарно: аденин (А) всегда против тимина (Т), гуанин (Г) против цитозина (Ц).

Нуклеотиды соединены друг с другом не случайно, а избирательно. Способность к избирательному взаимодействию аденина с тимином и гуанина с цитозином называется комплементарностью. Комплементарное взаимодействие определенных нуклеотидов объясняется особенностями пространственного расположения атомов в их молекулах, которые позволяют им сближаться и образовывать Н-связи. В полинуклеотидной цепочке соседние нуклеотиды связаны между собой через сахар (дезоксирибозу) и остаток фосфорной кислоты. РНК так же, как и ДНК, представляет собой полимер, мономерами которого являются нуклеотиды. Азотистые основания трех нуклеотидов те же самые, что входят в состав ДНК (А, Г, Ц); четвертое – урацил (У) – присутствует в молекуле РНК вместо тимина. Нуклеотиды РНК отличаются от нуклеотидов ДНК и по строению входящего в их состав углевода (рибоза вместо дизоксирибозы).

В цепочке РНК нуклеотиды соединяются путем образования ковалентных связей между рибозой одного нуклеотида и остатком фосфорной кислоты другого. По структуре различаются двух цепочечные РНК. Двух цепочечные РНК являются хранителями генетической информации у ряда вирусов, т.е. выполняют у них функции хромосом. Одно цепочечные РНК осуществляют перенос информации о структуре белков от хромосомы к месту их синтеза и участвуют в синтезе белков.

Существует несколько видов одно цепочечной РНК. Их названия обусловлены выполняемой функцией или местом нахождения в клетке. Большую часть РНК цитоплазмы (до 80-90%) составляет рибосомальная РНК (рРНК), содержащаяся в рибосомах. Молекулы рРНК относительно невелики и состоят в среднем из 10 нуклеотидов. Другой вид РНК (иРНК), переносящие к рибосомам информацию о последовательности аминокислот в белках, которые должны синтезироваться. Размер этих РНК зависит от длины участка ДНК, на котором они были синтезированы. Транспортные РНК выполняют несколько функций. Они доставляют аминокислоты к месту синтеза белка, «узнают» (по принципу комплементарности) триплет и РНК, соответствующий переносимой аминокислоте, осуществляют точную ориентацию аминокислоты на рибосоме.

Жиры представляют собой соединения жирных высокомолекулярных кислот и трехатомного спирта глицерина. Жиры не растворяются в воде – они гидрофобны. В клетке всегда есть и другие сложные гидрофобные жироподобные вещества, называемые липоидами. Одна из основных функций жиров – энергетическая. В ходе расщепления 1 г. жиров до СО2 и Н2О освобождается большое количество энергии – 38,9 кДж (

9,3 ккал). Содержание жира в клетке колеблется в пределах 5-15% от массы сухого вещества. В клетках живой ткани количество жира возрастает до 90%. Главная функция жиров в животном (и отчасти — растительном) мире — запасающая.

При полном окислении 1 г жира (до углекислого газа и воды) выделяется около 9 ккал энергии. (1 ккал = 1000 кал; калория (кал, cal) — внесистемная единица количества работы и энергии, равная количеству теплоты, необходимому для нагревания 1 мл воды на 1 °C при стандартном атмосферном давлении 101,325 кПа; 1 ккал = 4,19 кДж). При окислении (в организме) 1 г белков или углеводов выделяется только около 4 ккал/г. У самых разных водных организмов — от одноклеточных диатомовых водорослей до гигантских акул — жир случит «поплавком», уменьшая среднюю плотность тела. Плотность животных жиров составляет около 0,91-0,95 г/см³. Плотность костной ткани позвоночных близка к 1,7-1.8 г/см³, а средняя плотность большинства других тканей близка к 1 г/см³. Понятно, что жира нужно довольно много, чтобы «уравновесить» тяжелый скелет.

Жиры и липиды выполняют и строительную функцию: они входят в состав клеточных мембран. Благодаря плохой теплопроводности жир способен к защитной функции. У некоторых животных (тюлени, киты) он откладывается в подкожной жировой ткани, образуя слой толщиной до 1 м. Образование некоторых липоидов предшествует синтезу ряда гормонов. Следовательно, этим веществам присуща и функция регуляции обменных процессов.

источник

Таблица 1. Содержание химических элементов в клетке

Элемент Количество, % Элемент Количество, %
Кислород 65-75 Кальций 0,04-2,00
Углерод 15-18 Магний 0,02-0,03
Водород 8-10 Натрий 0,02-0,03
Азот 1,5-3,0 Железо 0,01-0,015
Фосфор 0,2-1,0 Цинк 0,0003
Калий 0,15-0,4 Медь 0,0002
Сера 0,15-0,2 Иод 0,0001
Хлор 0,05-0,10 Фтор 0,0001

По содержанию в клетке можно выделить три группы элементов.

— В первую группу входят кислород, углерод, водород и азот. На их долю приходится почти 98% всего состава клетки.

— Во вторую группу входят калий, натрий, кальций, сера, фосфор, магний, железо, хлор. Их содержание в клетке составляет десятые и сотые доли процента. Элементы этих двух групп относят к макроэлементам (от греч. макрос — большой).

— Остальные элементы, представ ленные в клетке сотыми и тысячными долями процента, входят в третью группу. Это микроэлементы (от греч. микро — малый).

Каких-либо элементов, присущих только живой природе, в клетке не обнаружено. Все перечисленные химические элементы входят и в состав неживой природы. Это указывает на единство живой и неживой природы.

Недостаток какого-либо элемента может привести к заболеванию, и даже гибели организма, так как каждый элемент играет определенную роль. Макроэлементы первой группы составляют основу биополимеров — белков, углеводов, нуклеиновых кислот, а также липидов, без которых жизнь невозможна. Сера входит в состав некоторых белков, фосфор — в состав нуклеиновых кислот, железо — в состав гемоглобина, а магний — в состав хлорофилла. Кальций играет важную роль в обмене веществ.

Часть химических элементов, содержащихся в клетке, входит в состав неорганических веществ — минеральных солей и воды.

Минеральные соли находятся в клетке, как правило, в виде катионов (К + , Na + , Ca 2+ , Mg 2+ ) и анионов ( HPO 2-/4 , H2PO -/4 , СI — , НСО3), соотношение которых определяет важную для жизнедеятельности клеток кислотность среды.

(У многих клеток среда слабощелочная и ее рН почти не изменяется, так как в ней постоянно поддерживается определенное соотношение катионов и анионов.)

Из неорганических веществ в живой природе огромную роль играет вода.

Без воды жизнь невозможна. Она составляет значительную массу большинства клеток. Много воды содержится в клетках мозга и эмбрионов человека: воды более 80%; в клетках жировой ткани — всего 40.% К старости содержание воды в клетках снижается. Человек, потерявший 20% воды, погибает.

Уникальные свойства воды определяют ее роль в организме. Она участвует в теплорегуляции, которая обусловлена высокой теплоемкостью воды — потреблением большого количества энергии при нагревании. Чем же определяется высокая теплоемкость воды?

В молекуле воды атом кислорода ковалентно связан с двумя атомами водорода. Молекула воды полярна, так как атом кислорода имеет частично отрицательный заряд, а каждый из двух атомов водорода имеет

частично положительный заряд. Между атомом кислорода одной молекулы воды и атомом водорода другой молекулы образуется водородная связь. Водородные связи обеспечивают соединение большого числа молекул воды. При нагревании воды значительная часть энергии расходуется на разрыв водородных связей, что и определяет ее высокую теплоемкость.

Вода — хороший растворитель. Благодаря полярности ее молекулы взаимодействуют с положительно и отрицательно заряженными ионами, способствуя тем самым растворению вещества. По отношению к воде все вещества клетки делятся на гидрофильные и гидрофобные.

Гидрофильными (от греч. гидро — вода и филео — люблю) называют вещества, которые растворяются в воде. К ним относят ионные соединения (например, соли) и некоторые неионные соединения (например, сахара).

Гидрофобными (от греч. гидро — вода и фобос — страх) называют вещества, нерастворимые в воде. К ним относят, например, липиды.

Вода играет большую роль в химических реакциях, протекающих в клетке в водных растворах. Она растворяет ненужные организму продукты обмена веществ и тем самым способствует выводу их из организма. Большое содержание воды в клетке придает ей упругость. Вода способствует перемещению различных веществ внутри клетки или из клетки в клетку.

Тела живой и неживой природы состоят из одинаковых химических элементов. В состав живых организмов входят неорганические вещества — вода и минеральные соли. Жизненно важные многочисленные функции воды в клетке обусловлены особенностями ее молекул: их полярностью, способностью образовывать водородные связи.

НЕОРГАНИЧЕСКИЕ КОМПОНЕНТЫ КЛЕТКИ

Другой тип классификации элементов в клетке:

К макроэлементам относятся кислород, углерод, водород, фосфор, калий, сера, хлор, кальций, магний, натрий, железо.
К микроэлеметам относятся марганец, медь, цинк, йод, фтор.
К ультрамикроэлементам относятся серебро, золото, бром, селен.

ЭЛЕМЕНТЫ СОДЕРЖАНИЕ В ОРГАНИЗМЕ (%) БИОЛОГИЧЕСКОЕ ЗНАЧЕНИЕ
Макроэлементы:
O.C.H.N O — 62%, C — 20%,
H — 10%, N — 3%
Входят в состав всех органических веществ клетки, воды
Фосфор Р 1,0 Входят в состав нуклеиновых кислот, АТФ (образует макроэргические связи), ферментов, костной ткани и эмали зубов
Кальций Са +2 2,5 У растений входит в состав оболочки клетки, у животных — в состав костей и зубов, активизирует свертываемость крови
Микроэлементы: 1-0,01
Сера S 0,25 Входит в состав белков, витаминов и ферментов
Калий К + 0,25 Обуславливает проведение нервных импульсов; активатор ферментов белкового синтеза, процессов фотосинтеза, роста растений
Хлор CI — 0,2 Является компонентом желудочного сока в виде соляной кислоты, активизирует ферменты
Натрий Na + 0,1 Обеспечивает проведение нервных импульсов, поддерживает осмотическое давление в клетке, стимулирует синтез гормонов
Магний Мg +2 0,07 Входит в состав молекулы хлорофилла, содержится в костях и зубах, активизирует синтез ДНК, энергетический обмен
Йод I — 0,1 Входит в состав гормона щитовидной железы — тироксина, влияет на обмен веществ
Железо Fе+3 0,01 Входит в состав гемоглобина, миоглобина, хрусталика и роговицы глаза, активатор ферментов, участвует в синтезе хлорофилла. Обеспечивает транспорт кислорода к тканям и органам
Ультрамикроэлементы: менее 0,01, следовые количества
Медь Си +2 Участвует в процессах кроветворения, фотосинтеза, катализирует внутриклеточные окислительные процессы
Марганец Мn Повышает урожайность растений, активизирует процесс фотосинтеза, влияет на процессы кроветворения
Бор В Влияет на ростовые процессы растений
Фтор F Входит в состав эмали зубов, при недостатке развивается кариес, при избытке — флюороз
Вещества :
Н20 60-98 Составляет внутреннюю среду организма, участвует в процессах гидролиза, структурирует клетку. Универсальный растворитель, катализатор, участник химических реакций

ОРГАНИЧЕСКИЕ КОМПОНЕНТЫ КЛЕТКИ

ВЕЩЕСТВА СТРОЕНИЕ И СВОЙСТВА ФУНКЦИИ
Липиды
Сложные эфиры высших жирных кислот и глицерина. В состав фосфолипидов входит дополнительно остаток Н3РО4.Обладают гидрофобными или гидрофильно-гидрофобными свойствами, высокой энергоемкостью Плохо растворимы или нерастворимы в воде Запасное питательное вещество. Строительная — оболочка растительной клетки
Белки Полимеры. Мономеры — 20 аминокислот. Ферменты — биокатализаторы.
I структура — последовательность аминокислот в полипептидной цепи. Связь — пептидная — СО- NH- Строительная — входят в состав мембранных структур, рибосом.
II структура — a -спираль, связь — водородная Двигательная (сократительные белки мышц).
III структура — пространственная конфигурация a -спирали (глобула). Связи — ионные, ковалентные, гидрофобные, водородные Транспортная (гемоглобин). Защитная (антитела).Регуляторная (гормоны, инсулин)
IV структура характерна не для всех белков. Соединение нескольких полипептидных цепей в единую суперструктуруВ воде плохо растворимы. Действие высоких температур, концентрированных кислот и щелочей, солей тяжелых металлов вызывает денатурацию
Нуклеиновые кислоты: Биополимеры. Состоят из нуклеотидов
ДНК — дезокси-рибонуклеино-вая кислота. Состав нуклеотида: дезоксирибоза, азотистые основания — аденин, гуанин, цитозин, тимин, остаток фосфорной кислоты — Н3РО4.
Комплементарность азотистых оснований А = Т, Г = Ц. Двойная спираль. Способна к самоудвоению
Образуют хромосомы. Хранение и передача наследственной информации, генетического кода. Биосинтез РНК, белков. Кодирует первичную структуру белка. Содержится в ядре, митохондриях, пластидах
РНК — рибонуклеиновая кислота. Состав нуклеотида: рибоза, азотистые основания — аденин, гуанин, цитозин, урацил, остаток Н3РО4. Комплементарность азотистых оснований А = У, Г = Ц. Одна цепь
Информационная РНК Передача информации о первичной структуре белка, участвует в биосинтезе белка
Рибосомальная РНК Строит тело рибосомы
Транспортная РНК Кодирует и переносит аминокислоты к месту синтеза белка — рибосомам
Вирусная РНК и ДНК Генетический аппарат вирусов

Важнейшая функция белков — каталитическая. Белковые молекулы, увеличивающие на несколько порядков скорость химических реакции в клетке, называют ферментами. Ни один биохимический процесс в организме не происходит без участия ферментов.

В настоящее время обнаружено свыше 2000 ферментов. Их эффективность во много раз выше, чем эффективность неорганических катализаторов, используемых в производстве. Так, 1 мг железа в составе фермента каталазы заменяет 10 т неорганического железа. Каталаза увеличивает скорость разложения пероксида водорода (Н2О2) в 10 11 раз. Фермент, катализирующий реакцию образования угольной кислоты (СО22О = Н2СО3), ускоряет реакцию в 10 7 раз.

Важным свойством ферментов является специфичность их действия, каждый фермент катализирует только одну или небольшую группу сходных реакций.

Вещество, на которое воздействует фермент, называют субстратом. Структуры молекулы фермента и субстрата должны точно соответствовать друг другу. Этим объясняется специфичность действия ферментов. При соединении субстрата с ферментом пространственная структура фермента изменяется.

Последовательность взаимодействия фермента и субстрата можно изобразить схематично:

Субстрат+Фермент — Фермент-субстратный комплекс — Фермент+Продукт.

Из схемы видно, что субстрат соединяется с ферментом с образованием фермент-субстратного комплекса. При этом субстрат превращается в новое вещество — продукт. На конечном этапе фермент освобождается от продукта и вновь вступает во взаимодействие с очередной молекулой субстрата.

Ферменты функционируют лишь при определенной температуре, концентрации веществ, кислотности среды. Изменение условий приводит к изменению третичной и четвертичной структуры белковой молекулы, а, следовательно, и к подавлению активности фермента. Как это происходит? Каталитической активностью обладает лишь определенный участок молекулы фермента, называемый активным центром. Активный центр содержит от 3 до 12 аминокислотных остатков и формируется в результате изгиба полипептидной цепи.

Под влиянием разных факторов изменяется структура молекулы фермента. При этом нарушается пространственная конфигурация активного центра, и фермент теряет свою активность.

Ферменты — это белки, играющие роль биологических катализаторов. Благодаря ферментам на несколько порядков возрастает скорость химических реакций в клетках. Важное свойство ферментов — специфичность действия в определенных условиях.

Нуклеиновые кислоты были открыты во второй половине XIX в. швейцарским биохимиком Ф. Мишером, который выделил из ядер клеток вещество с высоким содержанием азота и фосфора и назвал его «нуклеином» (от лат. нуклеус — ядро).

В нуклеиновых кислотах хранится наследственная информация о строении и функционировании каждой клетки и всех живых существ на Земле. Существует два типа нуклеиновых кислот — ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). Нуклеиновые кислоты, как и белки, обладают видовой специфичностью, то есть организмам каждого вида присущ свой тип ДНК. Чтобы выяснить причины видовой специфичности, рассмотрим строение нуклеиновых кислот.

Молекулы нуклеиновых кислот представляют собой очень длинные цепи, состоящие из многих сотен и даже миллионов нуклеотидов. Любая нуклеиновая кислота содержит всего четыре типа нуклеотидов. Функции молекул нуклеиновых кислот зависят от их строения, входящих в их состав нуклеотидов, их числа в цепи и последовательности соединения в молекуле.

Каждый нуклеотид состоит из трех компонентов: азотистого основания, углевода и фосфорной кислоты. В состав каждого нуклеотида ДНК входит один из четырех типов азотистых оснований (аденин — А, тимин — Т, гуанин — Г или цитозин — Ц), а также углевод дезоксирибоза и остаток фосфорной кислоты.

Таким образом, нуклеотиды ДНК различаются лишь типом азотистого основания.

Молекула ДНК состоит из огромного множества нуклеотидов, соединенных в цепочку в определенной последовательности. Каждый вид молекулы ДНК имеет свойственное ей число и последовательность нуклеотидов.

Молекулы ДНК очень длинные. Например, для буквенной записи последовательности нуклеотидов в молекулах ДНК из одной клетки человека (46 хромосом) потребовалась бы книга объемом около 820000 страниц. Чередование четырех типов нуклеотидов может образовать бесконечное множество вариантов молекул ДНК. Указанные особенности строения молекул ДНК позволяют им хранить огромный объем информации обо всех признаках организмов.

В 1953 г. американским биологом Дж. Уотсоном и английским физиком Ф. Криком была создана модель строения молекулы ДНК. Ученые установили, что каждая молекула ДНК состоит из двух цепей, связанных между собой и спирально закрученных. Она имеет вид двойной спирали. В каждой цепи четыре типа нуклеотидов чередуются в определенной последовательности.

Нуклеотидный состав ДНК различается у разных видов бактерий, грибов, растений, животных. Но он не меняется с возрастом, мало зависит от изменений окружающей среды. Нуклеотиды парные, то есть число адениновых нуклеотидов в любой молекуле ДНК равно числу тимидиновых нуклеотидов (А-Т), а число цитозиновых нуклеотидов равно числу гуаниновых нуклеотидов (Ц-Г). Это связано с тем, что соединение двух цепей между собой в молекуле ДНК подчиняется определенному правилу, а именно: аденин одной цепи всегда связан двумя водородными связями только с Тимином другой цепи, а гуанин — тремя водородными связями с цитозином, то есть нуклеотидные цепи одной молекулы ДНК комплементарны, дополняют друг друга.

ДНК содержат все бактерии, подавляющее большинство вирусов. Она обнаружена в ядрах клеток животных, грибов и растений, а также в митохондриях и хлоропластах. В ядре каждой клетки человеческого организма содержится 6,6 х 10 -12 г ДНК, а в ядре половых клеток — в два раза меньше — 3,3 х 10 -12 г.

Молекулы нуклеиновых кислот — ДНК и РНК состоят из нуклеотидов. В состав нуклеотидов ДНК входит азотистое основание (А, Т, Г, Ц), углевод дезоксирибоза и остаток молекулы фосфорной кислоты. Молекула ДНК представляет собой двойную спираль, состоящую из двух цепей, соединенных водородными связями по принципу комплементарности. Функция ДНК — хранение наследственной информации.

В клетках всех организмов имеются молекулы АТФ — аденозинтрифосфорной кислоты. АТФ — универсальное вещество клетки, молекула которого имеет богатые энергией связи. Молекула АТФ — это один своеобразный нуклеотид, который, как и другие нуклеотиды, состоит из трех компонентов: азотистого основания — аденина, углевода — рибозы, но вместо одного содержит три остатка молекул фосфорной кислоты (рис. 12). Связи, обозначенные на рисунке значком, — богаты энергией и называютсямакроэргическими. Каждая молекула АТФ содержит две макроэргические связи.

При разрыве макроэргической связи и отщеплении с помощью ферментов одной молекулы фосфорной кислоты освобождается 40 кДж/моль энергии, а АТФ при этом превращается в АДФ — аденозиндифосфорную кислоту. При отщеплении еще одной молекулы фосфорной кислоты освобождается еще 40 кДж/моль; образуется АМФ — аденозинмонофосфорная кислота. Эти реакции обратимы, то есть АМФ может пре вращаться в АДФ, АДФ — в АТФ.

Молекулы АТФ не только расщепляются, но и синтезируются, по этому их содержание в клетке относительно постоянно. Значение АТФ в жизни клетки огромно. Эти молекулы играют ведущую роль в энергетическом обмене, необходимом для обеспечения жизнедеятельности клетки и организма в целом.

Рис. Схема строения АТФ.

аденин –

Молекула РНК, как правило, одиночная цепь, состоящая из четырех типов нуклеотидов — А, У, Г, Ц. Известны три основных вида РНК: иРНК, рРНК, тРНК. Содержание молекул РНК в клетке непостоянно, они участвуют в биосинтезе белка. АТФ — универсальное энергетическое вещество клетки, в котором имеются богатые энергией связи. АТФ играет центральную роль в обмене энергии в клетке. РНК и АТФ содержатся как в ядре, так и в цитоплазме клетки.

источник

Из известных ныне около 110 химических элементов в состав клетки входит около 60. В соответствии с их количественным содержанием они делятся на три группы.

Таблица 7 – Группы химических элементов клетки

Макроэлементы Микроэлементы Ультрамикроэлементы
Количество определяется десятками процентов Количество определяется десятыми и сотыми долями процента Количество определяется тысячными долями процента и менее
Углерод, азот, водород, кислород Натрий, калий, кальций, магний, железо, сера, фосфор, хлор Кадмий, медь, цинк, фтор, кобальт и др.
Входят в состав основных органических веществ (белки, липиды, углеводы, нуклеиновые кислоты), а также в состав многих неорганических соединений Входят в состав органических и неорганических соединений (сложные белки, пигменты, фосфолипиды, нуклеиновые кислоты, неорганические соли и др.) Входят в состав ферментов, гормонов, витаминов и др.

Содержание воды в клетках различных тканей колеблется от 20% (в костной ткани) до 85% (в нервной ткани).

Молекула воды полярная (является диполем), что делает ее хорошим растворителем. Полярность и нелинейность молекулы воды определяется тем, что атомы водорода и кислорода, входящие в ее состав, различны по размерам и электроотрицательности.

Вода – хороший растворитель. Электростатическое притяжение между полярными молекулами воды и ионами сильнее, чем притяжение между катионом и анионом. В водном растворе ионы гидратируются.

Вещества, молекулы которых полярны и легко взаимодействуют с молекулами воды, называются гидрофильными. Вещества, молекулы которых неполярны и не могут растворяться в воде, называют гидрофобными. В воде такие вещества взаимодействуют друг с другом, образуя комплексы таким образом, чтобы с водой соприкасалась как можно меньшая поверхность.

Молекулы воды способны образовывать водородные связи. Одна молекула может образовать водородные связи с 4 другими молекулами воды.

Способность молекул воды образовывать водородные связи обеспечивает ряд ее свойств:

  • высокая удельная теплоемкость;
  • вязкость и поверхностное натяжение;
  • несжимаемость.

Удельная теплоемкость – количество тепла, необходимое для повышения температуры 1 кг воды на 1 ° С, очень велика. Большое количество энергии тратится на разрыв водородных связей. Водородные связи являются причиной вязкости воды, а также обеспечивают силы поверхностного натяжения: на поверхности воды из-за сильного притяжения ее молекул возникают силы сцепления, направленные внутрь воды.

Свойства воды Роль воды, определяемая этим свойством
Молекулы воды являются диполями, вода – полярное вещество Вода – хороший растворитель
Вода несжимаема Вода обеспечивает тургор клеток
Вода обладает высокой теплоемкостью и теплопроводностью Вода участвует в теплорегуляции клетки
Вода обладает текучестью Вода переносит растворенные в ней вещества

Другие функции воды в клетке:

  • Среда для протекания химических реакций
  • Участник и продукт химических реакций
  • Источник водорода и кислорода в фотосинтезе цианобактерий и эукариот
  • Снижает силу трения в некоторых структурах

В большинстве клеток и тканей соли присутствуют в растворенном состоянии, т.е. в виде катионов и анионов. Некоторые ткани содержат нерастворимые соли в составе своего межклеточного вещества (например, костная ткань животных).

Основными катионами клеток являются К + , Na + , Ca 2+ , Mg 2+ , основными анионами – Cl — , HPO 2 4 — , H2PO4 — , HCO — 3.

Катионы и анионы распределены неравномерно между клеткой и внеклеточной средой, что является необходимым условием существования клетки. Так, содержание ионов калия существенно выше внутри клетки, а ионов натрия – во внеклеточной среде.

Таблица 9 – Значение некоторых ионов в клетке

Ионы натрия, калия и хлора Участвуют в формировании нервных импульсов
Ионы калия, кальция, магния Активируют ряд ферментов
Ионы кальция
  • Участвуют в свертывании крови
  • Участвуют в мышечном сокращении
  • В составе извести являются компонентами межклеточного вещества костной ткани, раковин моллюсков и др.
Ионы магния Входят в состав хлорофилла
Ионы железа Fe 2+ Входят в состав гемоглобина
Ионы цинка Входят в состав гормона поджелудочной железы инсулина
Ионы иода Входят в состав гормона щитовидной железы тироксина
Анионы HPO 2 4 — , H2PO4 — , HCO — 3 Входят в состав буферных систем клетки, которые поддерживают рН на постоянном уровне
Анионы РО4 3- Входят в состав ряда органических веществ: нуклеотидов, фосфолипидов и др.

Углеводы и их роль в клетке

Эти соединения имеют общую формулу Cn(H2O)n, где n>3

Таблица 10 – Классификация углеводов и их свойства

Пентозы – рибоза, дезоксирибоза.

Гексозы – глюкоза, фруктоза, галактоза

Характеристика Моносахариды Полисахариды первого порядка Полисахариды второго порядка
Строение Состоят из одной молекулы, которая может включать 3 (триозы), 4 (тетрозы), 5 (пентозы) или 6 (гексозы) атомов углерода Состоят из 2–4 остатков моносахаридов Состоят из большого числа остатков моносахаридов
Свойства Имеют кристаллическую форму, хорошо растворимы в воде, имеют сладкий вкус Имеют кристаллическую форму, хорошо растворимы в воде, имеют сладкий вкус Не имеют кристаллической формы, нерастворимы в воде
Примеры Дисахариды – сахароза, мальтоза, лактоза Крахмал, целлюлоза, гликоген, хитин
  • Структурная (целлюлоза входит в состав клеточной стенки клеток растений, хитин входит в состав панциря членистоногих, клеточной стенки клеток грибов).
  • Энергетическая (при окислении углеводов выделяется энергия).
  • Запасающая (откладываются в запас – крахмал у растений, гликоген у животных).

Липиды или жиры – это сложные эфиры трехатомного спирта глицерина и высокомолекулярных карбоновых кислот (жирных кислот). Молекула липида состоит из гидрофильной головки, в состав которой входит глицерин, остаток фосфорной кислоты (фосфолипид) или углевод (гликолипид), и двух гидрофобных хвостов, состоящих из остатков жирных кислот (рис. 12).

Рисунок 12 – Схема молекулы фосфолипида: 1 – жирнокислотные хвосты; 2 – полярная головка

  • Структурная (входят в состав мембран).
  • Энергетическая (при окислении липидов выделяется энергия).
  • Запасающая (откладываются в запас).
  • Защитная (липиды образуют прослойки между внутренними органами – сальники).
  • Терморегулирующая (липиды обладают низкой теплопроводностью и, образуя теплоизоляционный слой, способствуют сохранению тепла).
  • Являются источником эндогенной воды.

Белки представляют собой полимеры, мономерами которых являются аминокислоты. В природе существует около 300 аминокислот, но в белках обнаружено только 20 из них. Особенностью аминокислот является наличие аминогруппы (NH2) и карбоксильной группы (СООН). Участки молекул, лежащие вне амино- и карбоксильной групп и определяющие специфику аминокислоты, называются радикалом.

Аминокислоты, которые не могут синтезироваться в организме человека, называются незаменимыми. К незаменимым относятся гистидин, лейцин, изолейцин, лизин, метионин, фенилаланин, треонин, триптофан, валин.

Аминокислоты, входящие в состав белков, можно разбить на две группы, в зависимости от того, каким является их радикал – полярным или неполярным. К неполярным аминокислотам относятся аланин, валин, изолейцин, лейцин, метионин, пролин, триптофан, фенилаланин. Полярными аминокислотами являются все остальные, например, аргинин, аспарагин, аспарагиновая кислота, гистидин, лизин, тирозин, треонин и др.

Соединение аминокислот в цепь происходит за счет амино- и карбоксильной групп, при этом образуется пептидная связь.

Пептидная связь – прочная ковалентная связь. Разнообразие белков определяется аминокислотами, которые входят в состав белка.

Таблица 11 – Уровни организации белковой молекулы

Уровень организации Описание Основные взаимодействия
Первичная линейная последовательность аминокислот пептидные связи
Вторичная спирально закрученная молекула водородные связи
Третичная глобула (шарообразная молекула) гидрофобные взаимодействия, электростатические взаимодействия, дисульфидные связи
Четвертичная объединение нескольких глобул в единый комплекс гидрофобные взаимодействия

Первичная структура белка образуется в результате биосинтеза на рибосомах, однако в таком состоянии белки в клетке не существуют. Они приобретают более высокие уровни организации – вторичную, третичную или четвертичную структуры.

Вторичная структура представляет собой спирально закрученную молекулу. Между витками спирали образуются водородные связи (между кислородом карбоксильной группы и водородом аминогруппы). Водородные связи гораздо слабее ковалентных, но их образуется большое количество, поэтому они обеспечивают образование довольно прочной структуры.

Третичная структура белка представляет собой глобулу – шарообразную структуру. Связи, поддерживающие третичную структуру, довольно слабые. Они возникают, в частности, в результате гидрофобного взаимодействия. Это взаимодействие связано с силами притяжения между неполярными участками белка в водной среде. Гидрофобные остатки некоторых аминокислот в водном растворе сближаются, «слипаются» и тем самым стабилизируют структуру белка. Внутри белковой глобулы оказываются гидрофобные остатки аминокислот, а на поверхности глобулы – гидрофильные. Кроме гидрофобного взаимодействия в поддержании третичной структуры участвуют электростатические силы между заряженными участками аминокислот. Между атомами серы, которую содержат некоторые аминокислоты, образуются ковалентные дисульфидные мостики. Третичная структура не является конечной. К макромолекуле белка могут присоединяться макромолекулы такого же белка или молекулы других белков. Такая структура называется четвертичной (рис. 13).

Рисунок 13 – Уровни организации молекул белка

Начиная со вторичной структуры пространственные конформации белка поддерживаются слабыми взаимодействиями. Под воздействием внешних факторов (изменение температуры, солевого состава среды, рН, под действием радиации и иных факторов) слабые связи, стабилизирующие макромолекулу, рвутся, что приводит к изменению структуры белка. Этот процесс называется денатурацией. Денатурация может быть обратимой и необратимой

Функции белка. Белки выполняют наиболее разнообразные функции по сравнению с другими веществами клетки.

  1. Структурная – белки входят в состав биомембран и ряда органоидов, например, рибосом. Белки соединительных тканей обеспечивают их прочность и эластичность: кератин шерсти и волос, коллаген сухожилий, хрящей и др.
  2. Ферментативная – белки являются биокатализаторами, которые ускоряют протекание биохимических реакций в клетке (далее – подробно).
  3. Транспортная – многие белки являются транспортерами ряда веществ, например, гемоглобин переносит кислород; многие белки клеточных мембран образуют транспортные системы клетки: каналы, обменники, насосы.
  4. Регуляторная – белки-регуляторы контролируют процессы, происходящие в клетке. Например, гормоны пептидной или белковой природы (гормон роста, инсулин и др.), влияя на продукцию или активность белков-ферментов, управляют обменными процессами в клетке.
  5. Двигательная – белки осуществляют движения клеток или их частей, например белки мышечной ткани актин и миозин обеспечивают движение мышц.
  6. Защитная функция белков реализуется антителами, интерфероном и фибриногеном.
  7. Антитела, вырабатываемые лимфоцитами, противостоят возбудителям болезней.
  8. Интерферон – белок, приостанавливающий размножение вирусов.
  9. Фибриноген – растворимый белок плазмы крови, на последнем этапе свертывания крови переходящий в нерастворимый белок фибрин, который участвует в образовании тромба.
  10. Рецепторную или сигнальную функцию выполняют специфические белки, встроенные в биомембраны, которые реагируют с химическими веществами (например, гормонами или нейромедиаторами), вызывая изменение функционирования клетки.
  11. Энергетическая – белки после их расщепления на аминокислоты и дезаминирования (реакция отщепления аминогруппы) служат субстратами для реакций энергетического обмена. Дезаминирование аминокислот – отщепление аминогруппы, которая преобразуется в аммиак, а затем в мочевину.

Фермент – биологический катализатор белковой природы, ускоряющий биохимические процессы в клетке.

Субстрат – вещество, с которым взаимодействует фермент.

Ферментативная реакция проходит по следующей схеме:

В ходе ферментативной реакции образуется фермент-субстратный комплекс, который распадается на свободный фермент и продукт реакции. Таким образом, фермент не расходуется в ходе реакции.

Фермент имеет центр для связывания субстрата, который называют активным центром. Субстрат и фермент подходят друг к другу, как ключ к замку.

Для активизации фермента необходимы специальные вещества, в роли которых могут выступать витамины (никотиновая кислота, витамины группы В), ионы металлов и др.

Кроме активаторов, известны вещества, которые, напротив, снижают скорость ферментативной реакции или вообще прекращают ее. Эти вещества называются ингибиторами.

Скорость ферментативной реакции зависит от ряда факторов внешней среды, в частности от температуры, и рН среды, а также от наличия ингибиторов. Максимальная скорость ферментативной реакции отмечается при оптимальных значениях температуры и рН, а также в отсутствие ингибиторов. Фермент активен при определенной температуре среды. Увеличение или уменьшение температуры приводит к снижению скорости ферментативной реакции. Оптимальная температура для ферментов человеческого организма 37–38 0 С. Кроме того, для каждого фермента существует оптимальное значение рН, при котором трехмерная структура фермента в области активного центра принимает необходимую форму.

Нуклеиновые кислоты были открыты в конце XIX века Мишером. Их структура была изучена уже в ХХ веке. Расшифровка структуры ДНК связана с именами Уотсона и Крика (1953).

Различают дезоксирибонуклеиновую (ДНК) и рибонуклеиновую (РНК) кислоты. Мономерами нуклеиновых кислот (НК) являются нуклеотиды. В состав каждого нуклеотида входят азотистое основание, пентоза, остаток фосфорной кислоты.

Азотистые основания разделяются на две группы – производные пурина и производные пиримидина. К пуриновым азотистым основаниям относятся аденин и гуанин, к пиримидиновым принадлежат тимин, цитозин и урацил.

Пентозы (пятиуглеродные моносахариды) представлены рибозой и дезоксирибозой.

Соединение нуклеотидов в цепь происходит благодаря эфирным связям, которые образуются между остатками пентоз и фосфорной кислоты. Таким образом, формируется сахарно-фосфорный скелет молекулы (рис. 14).

Таблица 12 – Сравнительная характеристика ДНК и РНК

Различны для разных видов РНК

  • и-РНК – передача информации о структуре белка с ДНК на рибосому
  • т-РНК – транспорт аминокислот к рибосомам
  • р-РНК входят в состав рибосом
Признак ДНК РНК
Локализация в клетке Ядро, митохондрии, хлоропласты Ядро, митохондрии, хлоропласты, цитоплазма, рибосомы
Локализация в ядре Хромосомы Ядрышко
Вид молекулы Двойная правозакрученная спираль (две полинуклеотидные цепи, соединенные водородными связями) Одна полинуклеотидная цепь
Мономеры Дезоксирибонуклеотиды Рибонуклеотиды
Строение мономера
Пуриновые азотистые основания Аденин, гуанин Аденин, гуанин
Пиримидиновые азотистые основания Тимин, цитозин Урацил, цитозин
Пентоза Дезоксирибоза Рибоза
Остаток фосфорной кислоты имеется имеется
Свойства Стабильность, способность к самоудвоению Лабильность
Функции
  • Химическая основа гена
  • Хранение и передача наследственной информации
  • Синтез ДНК
  • Синтез РНК

Двойная спираль ДНК образуется благодаря наличию водородных связей между комплементарными азотистыми основаниями разных цепей (рис. 14). Комплементарными являются такие азотистые основания, пространственная конфигурация которых позволяет образовывать им между собой водородные связи.

Комплементарную пару образуют одно пуриновое и одно пиримидиновое основания.

  • аденин – тимин
  • тимин – аденин
  • гуанин – цитозин
  • цитозин – гуанин
  • аденин – урацил (при образовании и-РНК)

Между тимином и аденином образуется две, а между гуанином и цитозином – три водородные связи.

источник