Меню

Содержание кислорода во вдыхаемом воздухе составляет

Атмосферный воздух, поступающий в легкие во время вдоха, называется вдыхаемым воздухом; воздух, выделяемый наружу через дыхательные пути во время выдоха, — выдыхаемым. Выдыхаемый воздух — это смесь воздуха, заполнявшего альвеолы, — альвеолярного воздуха — с воздухом, находящимся в воздухоносных путях (в полости носа, гортани, трахеи и бронхов). Состав вдыхаемого, выдыхаемого и альвеолярного воздуха в нормальных условиях у здорового человека довольно постоянен и определяется следующими цифрами (табл. 3).

Данные цифры могут несколько колебаться в зависимости от различных условий (состояние покоя или работы и др.). Но при всех условиях альвеолярный воздух отличается от вдыхаемого значительно меньшим содержанием кислорода и большим содержанием углекислого газа. Это происходит в результате того, что в легочных альвеолах из воздуха поступает в кровь кислород, а обратно выделяется углекислый газ.

Газообмен в легких обусловлен тем, что в легочных альвеолах и венозной крови, притекающей к легким, давление кислорода и углекислоты различно: давление кислорода в альвеолах выше, чем в крови, а давление углекислого газа, наоборот, в крови выше, чем в альвеолах. Поэтому в легких и осуществляется переход кислорода из воздуха в кровь, а углекислоты — из крови в воздух. Такой переход газов объясняется определенными физическими законами: если давление какого-нибудь газа, находящегося в жидкости и в окружающем ее воздухе, различно, то газ переходит из жидкости в воздух и наоборот, пока давление не уравновесится.

Кислород Углекислый газ Азот и другие газы
Вдыхаемый воздух 20,94 0,03 79,03
Выдыхаемый воздух 16,3 4,0 79,7
Альвеолярный воздух 14,2 5,2 80,6

В смеси газов, какой является воздух, давление каждого газа определяется процентным содержанием данного газа и называется парциальным давлением (от латинского слова pars — часть). Например, атмосферный воздух оказывает давление, равное 760 мм ртутного столба. Содержание кислорода в воздухе равно 20,94%. Парциальное давление кислорода атмосферного воздуха будет составлять 20,94% от общего давления воздуха, т. е. 760 мм, и равно 159 мм ртутного столба. Установлено, что парциальное давление кислорода в альвеолярном воздухе составляет 100 — 110 мм, а в венозной крови и капиллярах легких — 40 мм. Парциальное давление углекислого газа равняется в альвеолах 40 мм, а в крови — 47 мм. Разницей в парциальном давлении между газами крови и воздуха и объясняется газообмен в легких. В этом процессе активную роль играют клетки стенок легочных альвеол и кровеносных капилляров легких, через которые происходит переход газов.

источник

Воздух – это естественная смесь различных газов. Больше всего в нем содержатся такие элементы, как азот (около 77%) и кислород, менее 2% составляют аргон, углекислый газ и прочие инертные газы.

Кислород, или О2 – второй элемент периодической таблицы и важнейший компонент, без которого вряд ли бы существовала жизнь на планете. Он участвует в разнообразных процессах, от которых зависит жизнедеятельность всего живого….

О2 выполняет функцию окислительных процессов в человеческом теле, которые позволяют выделить энергию для нормальной жизнедеятельности. В состоянии покоя человеческий организм требует около 350 миллилитров кислорода, при тяжелых физических нагрузках это значение возрастает в три-четыре раза.

Сколько процентов кислорода в воздухе, которым мы дышим? Норма равна 20,95%. Выдыхаемый воздух содержит меньшее количество О2 – 15,5-16%. Состав выдыхаемого воздуха также включает углекислый газ, азот и другие вещества. Последующее понижение процентного содержания кислорода приводит к нарушению работы, а критическое значение 7-8% вызывает летальный исход.

Содержание прочих элементов в воздухе в различных условиях представлено в таблице ниже.

Кислород, % Углекислый газ, % Азот и другие элементы, %
Вдыхаемый воздух 20,95 0,03 79,02
Выдыхаемый воздух 16,3 4 79,7
Альвеолярный воздух 14,5 5 80,5

Из таблица можно понять, например, что в выдыхаемом воздухе содержится очень много азота и дополнительных элементов, а вот О2 всего 16,3%. Содержание кислорода во вдыхаемом воздухе примерно составляет 20,95%.

Важно понять, что представляет собой такой элемент, как кислород. О2– наиболее распространенный на земле химический элемент, который не имеет цвета, запаха и вкуса. Он выполняет важнейшую функцию окисления в атмосфере.

Без восьмого элемента периодической таблицы нельзя добыть огонь. Сухой кислород позволяет улучшить электрические и защитные свойства пленок, уменьшать их объемный заряд.

Содержится этот элемент в следующих соединениях:

  1. Силикаты – в них присутствует примерно 48% О2.
  2. Вода (морская и пресная) – 89%.
  3. Воздух – 21%.
  4. Другие соединения в земной коре.

Воздух содержит в себе не только газообразные вещества, но и пары и аэрозоли, а также различные загрязняющие примеси. Это может быть пыль, грязь, другой различный мелкий мусор. В нем содержатся микробы, которые могут вызывать различные заболевания. Грипп, корь, коклюш, аллергены и прочие болезни – это лишь малый список негативных последствий, которые появляются при ухудшении качества воздуха и повышении уровня болезнетворных бактерий.

Процентное соотношение воздуха – это количество всех элементов, которые входят в его состав. Показать наглядно, из чего состоит воздух, а также процент кислорода в воздухе удобнее на диаграмме.

Диаграмма отображает, какого газа содержится больше в воздухе. Значения, приведенные на ней, будут немного отличаться для вдыхаемого и выдыхаемого воздуха.

Диаграмма соотношение воздуха.

Выделяют несколько источников, из которых образуется кислород:

  1. Растения. Еще из школьного курса биологии известно, что растения выделяют кислород при поглощении углекислого газа.
  2. Фотохимическое разложение водяных паров. Процесс наблюдается под действием солнечного излучения в верхнем слое атмосферы.
  3. Перемешивание потоков воздуха в нижних атмосферных слоях.

Для человека огромное значение имеет так называемое парциальное давление, которое мог бы производить газ, если бы занимал весь занимаемый объем смеси. Нормальное парциальное давление на высоте 0 метров над уровнем моря составляет 160 миллиметров ртутного столба. Увеличение высоты вызывает уменьшение парциального давления. Этот показатель важен, так как от него зависит поступление кислорода во все важные органы и в кровяную систему.

Кислород нередко используется для лечения различных заболеваний. Кислородные баллоны, ингаляторы помогают органам человека нормально функционировать при наличии кислородного голодания.

Важно ! На состав воздуха влияют многие факторы, соответственно, может меняться процент кислорода. Негативная экологическая ситуация приводит к ухудшению качества воздуха. В мегаполисах и крупных городских поселениях пропорция углекислого газа (СО2) будет больше, чем в небольших поселениях или на лесных и заповедных территориях. Большое влияние оказывает и высота – процентное содержание кислорода будет меньше в горах. Можно рассмотреть следующий пример – на горе Эверест, которая достигает высоты 8,8 км, концентрация кислорода в воздухе будет ниже в 3 раза, чем в низине. Для безопасного пребывания на высокогорных вершинах требуется использовать кислородные маски.

Состав воздуха изменялся с течением лет. Эволюционные процессы, природные катаклизмы привели к изменениям в биосфере, поэтому уменьшился процент кислорода, необходимый для нормальной работы биоорганизмов. Можно рассмотреть несколько исторических этапов:

  1. Доисторическая эпоха. В это время концентрация кислорода в атмосфере составляла около 36%.
  2. 150 лет назад О2 занимал 26% от общего воздушного состава.
  3. В настоящее время концентрация кислорода в воздухе составляет чуть менее 21%.

Последующее развитие окружающего мира может привести к дальнейшему изменению состава воздуха. На ближайшее время маловероятно, что концентрация О2 может быть ниже 14%, так как это вызовет нарушение работы организма.

Изменение содержания кислорода в воздухе на потяжении нескольких веков.

Малое поступление чаще всего наблюдается в душном транспорте, плохо проветриваемом помещении или на высоте. Понижение уровня содержания кислорода в воздухе может вызвать негативное влияние на организм. Происходит истощение механизмов, наибольшему влиянию подвергается нервная система. Причин, по которым организм страдает от гипоксии, можно выделить несколько:

  1. Кровяная нехватка. Вызывается при отравлении угарным газом. Подобная ситуация понижает кислородную составляющую крови. Это опасно тем, что кровь прекращает доставить кислород к гемоглобину.
  2. Циркуляторная нехватка. Она возможна при диабете, сердечной недостаточности. В такой ситуации ухудшается или становится невозможным транспорт крови.
  3. Гистотоксические факторы, влияющие на организм, могут вызвать потерю способности поглощать кислород. Возникает при отравлении ядами или из-за воздействия тяжелых металлов.

По ряду симптомов можно понять, что организму требуется О2. В первую очередь повышается частота дыхания. Также увеличивается частота сердечных сокращений. Эти защитные функции призваны поставить кислород в легкие и обеспечить им кровь и ткани.

Недостаток кислорода вызывает головные боли, повышенную сонливость, ухудшение концентрации. Единичные случаи не так страшны, их довольно просто подкорректировать. Для нормализации дыхательной недостаточности врач выписывает бронхорасширяющие лекарства и другие средства. Если же гипоксия принимает тяжелые формы, такие как потеря координации человека или даже коматозное состояние, то лечение усложняется.

Если обнаружены симптомы гипоксии, важно незамедлительно обратиться к доктору и не заниматься самолечением, так как применение того или иного лекарственного средства зависит от причин нарушения. Для легких случаев помогает лечение кислородными масками и подушками, кровяная гипоксия требует переливания крови, а корректировка циркулярных причин возможна только при операции на сердце или сосуды.

Невероятное путешествие кислорода по нашему организму

Кислород – важнейшая составляющая воздуха, без которой невозможно осуществление многих процессов на Земле. Воздушный состав менялся в течение десятков тысяч лет из-за эволюционных процессов, но в настоящее время количество кислорода в атмосфере достигло значения в 21%. Качество воздуха, которым дышит человек, влияет на его здоровье, поэтому необходимо следить за его чистотой в помещении и постараться сократить загрязнение окружающей среды.

источник

Воздух – это естественная смесь различных газов. Больше всего в нем содержатся такие элементы, как азот (около 77%) и кислород, менее 2% составляют аргон, углекислый газ и прочие инертные газы.

Кислород, или О2 – второй элемент периодической таблицы и важнейший компонент, без которого вряд ли бы существовала жизнь на планете. Он участвует в разнообразных процессах, от которых зависит жизнедеятельность всего живого.

О2 выполняет функцию окислительных процессов в человеческом теле, которые позволяют выделить энергию для нормальной жизнедеятельности. В состоянии покоя человеческий организм требует около 350 миллилитров кислорода, при тяжелых физических нагрузках это значение возрастает в три-четыре раза.

Сколько процентов кислорода в воздухе, которым мы дышим? Норма равна 20,95%. Выдыхаемый воздух содержит меньшее количество О2 – 15,5-16%. Состав выдыхаемого воздуха также включает углекислый газ, азот и другие вещества. Последующее понижение процентного содержания кислорода приводит к нарушению работы, а критическое значение 7-8% вызывает летальный исход.

Содержание прочих элементов в воздухе в различных условиях представлено в таблице ниже.

Кислород, % Углекислый газ, % Азот и другие элементы, %
Вдыхаемый воздух 20,95 0,03 79,02
Выдыхаемый воздух 16,3 4 79,7
Альвеолярный воздух 14,5 5 80,5

Из таблица можно понять, например, что в выдыхаемом воздухе содержится очень много азота и дополнительных элементов, а вот О2 всего 16,3%. Содержание кислорода во вдыхаемом воздухе примерно составляет 20,95%.

Важно понять, что представляет собой такой элемент, как кислород. О2– наиболее распространенный на земле химический элемент, который не имеет цвета, запаха и вкуса. Он выполняет важнейшую функцию окисления в атмосфере.

Без восьмого элемента периодической таблицы нельзя добыть огонь. Сухой кислород позволяет улучшить электрические и защитные свойства пленок, уменьшать их объемный заряд.

Читайте также:  Називин капли до года инструкция

Содержится этот элемент в следующих соединениях:

  1. Силикаты – в них присутствует примерно 48% О2.
  2. Вода (морская и пресная) – 89%.
  3. Воздух – 21%.
  4. Другие соединения в земной коре.

Воздух содержит в себе не только газообразные вещества, но и пары и аэрозоли, а также различные загрязняющие примеси. Это может быть пыль, грязь, другой различный мелкий мусор. В нем содержатся микробы, которые могут вызывать различные заболевания. Грипп, корь, коклюш, аллергены и прочие болезни – это лишь малый список негативных последствий, которые появляются при ухудшении качества воздуха и повышении уровня болезнетворных бактерий.

Процентное соотношение воздуха – это количество всех элементов, которые входят в его состав. Показать наглядно, из чего состоит воздух, а также процент кислорода в воздухе удобнее на диаграмме.

Диаграмма отображает, какого газа содержится больше в воздухе. Значения, приведенные на ней, будут немного отличаться для вдыхаемого и выдыхаемого воздуха.

Выделяют несколько источников, из которых образуется кислород:

  1. Растения. Еще из школьного курса биологии известно, что растения выделяют кислород при поглощении углекислого газа.
  2. Фотохимическое разложение водяных паров. Процесс наблюдается под действием солнечного излучения в верхнем слое атмосферы.
  3. Перемешивание потоков воздуха в нижних атмосферных слоях.

Для человека огромное значение имеет так называемое парциальное давление, которое мог бы производить газ, если бы занимал весь занимаемый объем смеси. Нормальное парциальное давление на высоте 0 метров над уровнем моря составляет 160 миллиметров ртутного столба. Увеличение высоты вызывает уменьшение парциального давления. Этот показатель важен, так как от него зависит поступление кислорода во все важные органы и в кровяную систему.

Кислород нередко используется для лечения различных заболеваний. Кислородные баллоны, ингаляторы помогают органам человека нормально функционировать при наличии кислородного голодания.

Состав воздуха изменялся с течением лет. Эволюционные процессы, природные катаклизмы привели к изменениям в биосфере, поэтому уменьшился процент кислорода, необходимый для нормальной работы биоорганизмов. Можно рассмотреть несколько исторических этапов:

  1. Доисторическая эпоха. В это время концентрация кислорода в атмосфере составляла около 36%.
  2. 150 лет назад О2 занимал 26% от общего воздушного состава.
  3. В настоящее время концентрация кислорода в воздухе составляет чуть менее 21%.

Последующее развитие окружающего мира может привести к дальнейшему изменению состава воздуха. На ближайшее время маловероятно, что концентрация О2 может быть ниже 14%, так как это вызовет нарушение работы организма.

Малое поступление чаще всего наблюдается в душном транспорте, плохо проветриваемом помещении или на высоте. Понижение уровня содержания кислорода в воздухе может вызвать негативное влияние на организм. Происходит истощение механизмов, наибольшему влиянию подвергается нервная система. Причин, по которым организм страдает от гипоксии, можно выделить несколько:

  1. Кровяная нехватка. Вызывается при отравлении угарным газом. Подобная ситуация понижает кислородную составляющую крови. Это опасно тем, что кровь прекращает доставить кислород к гемоглобину.
  2. Циркуляторная нехватка. Она возможна при диабете, сердечной недостаточности. В такой ситуации ухудшается или становится невозможным транспорт крови.
  3. Гистотоксические факторы, влияющие на организм, могут вызвать потерю способности поглощать кислород. Возникает при отравлении ядами или из-за воздействия тяжелых металлов.

По ряду симптомов можно понять, что организму требуется О2. В первую очередь повышается частота дыхания. Также увеличивается частота сердечных сокращений. Эти защитные функции призваны поставить кислород в легкие и обеспечить им кровь и ткани.

Недостаток кислорода вызывает головные боли, повышенную сонливость, ухудшение концентрации. Единичные случаи не так страшны, их довольно просто подкорректировать. Для нормализации дыхательной недостаточности врач выписывает бронхорасширяющие лекарства и другие средства. Если же гипоксия принимает тяжелые формы, такие как потеря координации человека или даже коматозное состояние, то лечение усложняется.

Если обнаружены симптомы гипоксии, важно незамедлительно обратиться к доктору и не заниматься самолечением, так как применение того или иного лекарственного средства зависит от причин нарушения. Для легких случаев помогает лечение кислородными масками и подушками, кровяная гипоксия требует переливания крови, а корректировка циркулярных причин возможна только при операции на сердце или сосуды.

Невероятное путешествие кислорода по нашему организму

Кислород – важнейшая составляющая воздуха, без которой невозможно осуществление многих процессов на Земле. Воздушный состав менялся в течение десятков тысяч лет из-за эволюционных процессов, но в настоящее время количество кислорода в атмосфере достигло значения в 21%. Качество воздуха, которым дышит человек, влияет на его здоровье, поэтому необходимо следить за его чистотой в помещении и постараться сократить загрязнение окружающей среды.

источник

Основными составными частями атмосферного воздуха являются кислород (около 21%), азот (78%), углекислый газ (0,03—0,04%), водяные пары, инертные газы, озон, перекись водорода (около 1%).

Кислород — наиболее составная часть воздуха. При его непосредственном участии протекают все окислительные процессы в организме человека и животных. В покое человек потребляет в минуту примерно 350 мл кислорода, а при тяжелой физической работе количество потребляемого кислорода увеличивается в несколько раз.

Вдыхаемый воздух содержит 20,7—20,9% кислорода, а выдыхаемый — около 15—16%. Таким образом, ткани организма поглощают около 1/4 кислорода, имеющегося в составе вдыхаемого воздуха.

В атмосфере содержание кислорода существенно не изменяется. Растения поглощают углекислый газ и, расщепляя его, усваивают углерод, а освободившийся кислород выделяют в атмосферу. Источником образования кислорода является также фотохимическое разложение водяных паров в верхних слоях атмосферы под влиянием ультрафиолетового излучения солнца. В обеспечении постоянного состава атмосферного воздуха имеет значение также перемешивание воздушных потоков в нижних слоях атмосферы. Исключение составляют герметически замкнутые помещения, где вследствие длительного пребывания людей содержание кислорода может значительно понижаться (подводные лодки, убежища, герметизированные кабины самолетов и др.).

Для организма важное значение имеет парциальное давление * кислорода, а не его абсолютное содержание во вдыхаемом воздухе. Это обусловлено тем, что переход кислорода из альвеолярного воздуха в кровь и из крови в тканевую жидкость происходит под влиянием разницы в парциальном давлении. Парциальное давление кислорода уменьшается с увеличением высоты местности над уровнем моря, (таблица 1).

Таблица 1. Парциальное давление кислорода на разных высотах

Высота над уровнем моря (м) Барометрическое давление (мм рт. ст.) Парциальное давление кислорода (мм рт. ст.)
760 160
1000 674 141
2000 596 125
3000 525 110
4000 462 98
5000 405 85
6000 354 75

Большое значение имеет использование кислорода для лечения заболеваний, сопровождающихся кислородным голоданием (кислородные палатки, ингаляторы).

Углекислый газ. Содержание углекислого газа в атмосфере достаточно постоянно. Это постоянство объясняется круговоротом его в природе. Несмотря на то, что процессы гниения, жизнедеятельности организма сопровождаются выделением углекислого газа, значительного увеличения его содержания в атмосфере не происходит, так как углекислый газ усваивается растениями. При этом углерод идет на построение органических веществ, а кислород поступает в атмосферу. В выдыхаемом воздухе содержится до 4,4% углекислого газа.

Углекислый газ — физиологический возбудитель дыхательного центра, поэтому при искусственном дыхании его в незначительном количестве добавляют к воздуху. В больших количествах он может оказывать наркотическое действие и вызывать смерть.

Углекислый газ имеет и гигиеническое значение. По его содержанию судят о чистоте воздуха жилых и общественных помещений (т. е. помещений, где находятся люди). При скоплении людей в плохо вентилируемых помещениях параллельно накоплению углекислого газа в воздухе увеличивается содержание других продуктов жизнедеятельности человека, повышается температура воздуха и увеличивается его влажность.

Установлено, что если содержание углекислого газа в воздухе помещений превышает 0,07—0,1%, то воздух приобретает неприятный запах и может нарушить функциональное состояние организма.

Параллельность изменения перечисленных свойств воздуха жилых помещений и возрастания концентрации углекислого газа, а также простота определения его содержания позволяют использовать этот показатель для гигиенической оценки качества воздуха и эффективности вентиляции общественных помещений.

Азот и другие газы. Азот является основной составной частью атмосферного воздуха. В организме он находится в растворенном состоянии в крови и тканевых жидкостях, но не принимает участия в химических реакциях.

В настоящее время экспериментально установлено, что в условиях повышенного давления азот воздуха вызывает у животных расстройство нервно-мышечной координации, последующее возбуждение и наркотическое состояние. Аналогичные явления исследователи наблюдали у водолазов. Применение для дыхания водолазов гелио-кислородной смеси позволяет увеличить глубину спуска до 200 м без выраженных симптомов интоксикации.

При электрических грозовых разрядах и под влиянием ультрафиолетовых лучей солнца в воздухе образуется незначительное количество других газов. Гигиеническое значение их сравнительно невелико.

* Парциальным давлением газа в смеси газов называется то давление, которое производил бы данный газ, если бы он занимал весь объем смеси.

источник

Производя попеременно вдох и выдох, человек вентилирует легкие, поддерживая в легочных пузырьках (альвеолах) относительно постоянный газовый состав. Человек дышит атмосферным воздухом с большим содержанием кислорода (20,9%) и низким содержанием углекислого газа (0,03%), а выдыхает воздух, в котором кислорода 16,3%, углекислого газа 4% (табл. 8).

Состав альвеолярного воздуха значительно отличается от состава атмосферного, вдыхаемого воздуха. В нем меньше кислорода (14,2%) и большое количество углекислого газа (5,2%).

Азот и инертные газы, входящие в состав воздуха, в дыхании участия не принимают, и их содержание во вдыхаемом, выдыхаемом и альвеолярном воздухе практически одинаково.


Таблица 8. Состав вдыхаемого, выдыхаемого и альвеолярного воздуха

Почему в выдыхаемом воздухе кислорода содержится больше, чем в альвеолярном? Объясняется это тем, что при выдохе к альвеолярному воздуху примешивается воздух, который находится в органах дыхания, в воздухоносных путях.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8249 — | 7217 — или читать все.

178.45.227.63 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

FIO2 — единственный показатель, который можно определять как быстрым, так и медленным оксиметром. Напомним, что адаптер быстродействующего оксиметра располагается между интубационной трубкой и тройником контура. Следует, однако, иметь в виду, что монитор неспособен различать направление движения газа: его «интеллекта» хватает лишь на то, чтобы обозначать на дисплее максимальную измеренную концентрацию как инспираторную, а минимальную — как экспираторную. Так оно, впрочем, почти всегда и бывает.

FIO2 фиксируется оксиметром в самой высокой точке на оксиграмме дыхательного цикла. На первый взгляд этот принцип представляется безукоризненным, однако в практической деятельности анестезиолог ежедневно сталкивается с эпизодами, когда содержание кислорода в альвеолах пациента оказывается выше, чем во вдыхаемом газе, и информация на цифровом дисплее отображается с точностью до наоборот. Впрочем, такие несообразности в большинстве случаев кратковременны, без труда распознаются по форме кривой и тренда и ничуть не умаляют достоинств метода.

Медленный оксиметр, датчик которого устанавливается в линии вдоха, измеряет только FIO2, и с этой своей единственной задачей монитор всегда справляется без проблем.

При дыхании атмосферным воздухом FIO2 составляет 21 %, а при дыхании чистым кислородом — 100 %.

Допустимый выбор инспираторной концентрации кислорода всегда ограничивается этими двумя пределами, за нижний из которых не позволяет выходить здравый смысл, а за верхний — закон Дальтона.

Читайте также:  Фербедон мазь инструкция по применению

Содержание кислорода во вдыхаемом газе определяет высоту расположения оксиграммы на дисплее.

То же самое относится и к капнограмме, которая поднимается над изолинией на высоту, равную концентрации СО2 во вдыхаемом газе. Но если рециркуляция СО2 в контуре встречается не столь уж часто и всегда является следствием и признаком неполадок, то смещение оксиграммы вверх-вниз по дисплею происходит всякий раз, когда применяется кислород.

Содержание кислорода в дыхательных газовых смесях удобнее всего выражать в размерностях абсолютной концентрации, а именно в единицах парциального давления — мм рт. ст. Это дает возможность корректно оценивать и сравнивать результаты независимо от условий измерения — колебаний температуры, влажности и, главное, барометрического давления: вряд ли нужно долго доказывать, что в 21 % объема газовой смеси при 760 мм рт. ст. помещается больше молекул кислорода, чем при 720 мм рт. ст. Данная проблема особенно актуальна для больниц, расположенных на возвышенностях, а также в метеолабильных регионах с частыми и резкими перепадами атмосферного давления.

Несмотря на весомость приведенных выше аргументов, существует устойчивая традиция, по которой инспираторная концентрация кислорода указывается в процентах или десятичной дробью. В значительной мере это связано с тем, что все дозирующие кислород устройства, от простейшего блока ротаметров до прецизионного блендера дорогого респиратора, работают как смесители различных газов в конкретных объемных соотношениях и не наделены свойством учитывать весомость каждого процента в зависимости от барометрического давления.

В респираторной терапии и физиологии дыхания FiO2 — одий из ключевых параметров, который необходимо учитывать при оценке показателей газообмена. Например, SpO2 = 97 % при FIO2 = 0,21 свидетельствует о нормальном состоянии легких, в то время как при FIO2 = 0,9 такой же уровень сатурации служит признаком шунтирования крови.

Нижний предельный допустимый уровень FIO2 соответствует концентрации кислорода в атмосфере и составляет 0,21 (или 21%).

Подача больному во время наркоза более низких концентраций кислорода изредка имеет место, и эту проблему мы подробнее рассмотрим в дальнейшем. Здесь же только заметим, что такие случаи мгновенно выявляются оксиметром.

Здоровый человек способен успешно компенсировать снижение FIO2 до 18-19 % и поддерживать SаО2 на нормальном уровне за счет гипервентиляции. Известно также, что здоровые люди переносят довольно длительные эпизоды неглубокой гипоксии практически без стойких отрицательных последствий. Эти сведения, однако, не должны настраивать врача на терпимое отношение к таким эпизодам. Во время наркоза подача больному слегка гипоксических смесей недопустима, поскольку вызывает значительно более глубокую гипоксемию, чем у бодрствующего здорового пациента.

Давно и надежно установлено, что во время общей анестезии дыхания атмосферным воздухом (FIO2 = 0,21) обычно недостаточно, чтобы поддерживать сатурацию артериальной крови в нормальных пределах.

Это обусловлено увеличением неравномерности регионарных вентиляционно-перфузионных отношений и шунтированием крови в легких, а также угнетением спонтанного дыхания наркотиками. Поэтому вдыхаемая (вдуваемая) дыхательная смесь, употребляемая для наркоза, должна содержать 25-30 % кислорода; при наличии гигюволемии, гипертермии, гиповентиляции или при ИВЛ в агрессивных режимах FIO2 требует дополнительного подъема.

При проведении длительной ИВЛ возникает проблема токсического действия кислорода на легочную ткань 1 .

1 Подробнее эта проблема рассмотрена в гл. «Пульсоксиметрия».

Установленный на сегодня предельный уровень FIO2, считающийся безопасным для длительного использования, составляет 50 %.

Однако при критическом поражении легких его нередко приходится превышать. В таких случаях нужно помнить одно из основных правил интенсивной респираторной терапии, а именно: применять ту минимальную концентрацию кислорода во вдыхаемом газе, которая обеспечивает приемлемый уровень оксигенации артериальной крови, и использовать все доступные средства, чтобы улучшить газообменную функцию легких и уменьшить FIO2.

Чем вызвана необходимость мониторного контроля концентрации кислорода во вдыхаемом или вдуваемом газе во время наркоза или при искусственной вентиляции легких?

Во-первых, мониторинг FIO2 — самый быстрый и надежный способ обнаружения разнообразных неисправностей в системах снабжения рабочих мест кислородом. Такие неполадки иногда происходят и порой влекут за собой тяжелейшие последствия. Во-вторых, без оксиметрического мониторинга нельзя проконтролировать функционирование различных дозаторов кислорода. В-третьих, оксиметрия позволяет выявлять ошибки, от которых не застрахован никто, то есть ошибки, которые совершаются из-за усталости, невнимательности, перегрузки, а подчас и по незнанию (что, впрочем, не составляет разницы в отношении последствий для больного).

Рассмотрим несколько типичных проблем.

Падение давления сжатого кислорода в системе пневмопитания. Такие ситуации более характерны для лечебных учреждений, где используют сжатый кислород в баллонах, а не жидкий кислород. Разводка сжатого кислорода должна быть снабжена манометрами, установленными на рабочих местах, и звуковой сигнализацией, включающейся при критическом снижении давления. Однако контрольные манометры нередко располагаются вне операционных и палат интенсивной терапии, а сигнализацией оборудовано ничтожно малое число больниц. Многие импортные модели респираторов и наркозных аппаратов имеют собственный манометр и аларм-систему 1 , в остальных же случаях, а их явное большинство, безопасность пациента призван обеспечивать оксиметр.

1 О значении, которое придается мониторингу пневмопитания, говорит тот факт, что в зарубежной аппаратуре аларм на падение давления сжатого кислорода заглушить, даже на кратчайший срок, невозможно. Он отключается только автомагически после нормализации даилепия кислорода.

Включение респиратора при закрытом вентиле на системе сжатого кислорода или случайное закрытие вентиля в процессе работы респиратора — довольно редкие, но с трудом поддающиеся выявлению непреднамеренные действия. Далеко не все смесители в респираторах обладают свойством сигнализировать о нарушении подачи сжатых газов, и догадаться «по поведению» респиратора о том, что пациент вентилируется воздухом, отнюдь не просто. В таких случаях нарастающая гипоксемия может спровоцировать врача на ряд серьезных, но совершенно ненужных мер, в то время как достаточно ограничиться лишь открытием вентиля. С решением этой проблемы справляется оксиметр.

Признаком нарушения подачи кислорода в контур респиратора является FIO2 = 21 % и отсутствие реакции данного показателя на попытки изменения концентрации кислорода.

Неисправность устройства, формирующего газовую смесь. Вряд ли стоит забывать, что современные дозирующие устройства позволяют изменять концентрацию кислорода во вдуваемом газе, но не контролировать ее. Лишь некоторые модели респираторов и наркозных аппаратов имеют собственный внешний оксиметр, который устанавливается на консоли аппарата и обычно относится к разряду медленных. Типичные причины неисправности дозаторов кислорода — переполнение смесителя конденсатом из сжатого воздуха и резкие подъемы давления в системе сжатого кислорода. В результате в контур начинает поступать газовая смесь, состав которой не соответствует заданному.

Непродуманность конструкции и низкое качество отечественной респираторной аппаратуры. Ссодроганием вспомнив о способах дозирования кислорода в респираторах РО-6, ДП-8 и других (а были ли другие?), не без горечи в душе приходится признать: работать с ними — все равно что с завязанными глазами ездить на автомобиле. Если жизнь вынуждает пользоваться отечественной наркозно-дыхательной аппаратурой, следует принимать всяческие меры, чтобы обезопасить пациента и себя от ее дурных наклонностей. Оксиметр в данном случае позволяет не задавать, а получать требуемую концентрацию кислорода, не глядя на поплавки ротаметров и не сверяясь с таблицами 1 . Кстати, благодаря периодической проверке дозирующих устройств откалиброванным оксиметром удается предотвратить многие неприятности.

1 Современный зарубежный наркозный аппарате с блоком ИВЛ стоит примерно столько же, сколько стоят три-пять отличных мультигазовых мониторов или один неплохой импортный автомобиль.

Контроль инспираторной концентрации кислорода эффективно защищает больного и врача от редкого, но чрезвычайно опасного осложнения анестезии — непреднамеренной подачи в контур чистой закиси азота. Стандартная причина осложнения — ошибочное подключение баллона с закисью азота к кислородному штуцеру наркозного аппарата. В этом случае при вводном наркозе пациент дышит чистой закисью азота, которая мгновенно вымывает кислород из легких. Более того, венозная кровь, притекающая к легким и содержащая немалый запас кислорода, «выгружает» его в альвеолы, после чего направляется к тканям.

При дыхании чистой закисью азота сатурация артериальной крови падает до несовместимого с жизнью уровня в течение 30-40 с.

Редкий анестезиолог способен за несколько мгновений осознать, что происходит, и принять верное решение. Анализ таких случаев показал, что зачастую врач рефлекторно увеличивает поток «кислорода» и быстро доводит дело до финала. Вариации на эту тему включают подачу закиси азота при закрытом по невнимательности кислородном ротаметре 2 , а также перекрытие системы сжатого кислорода в разгар операционного дня. Незамедлительное распознавание таких ситуаций — прямое назначение оксиметра.

Применение оксиметра при общей анестезии — непременное требование стандартов безопасности во многих странах. Это тем более относится к получившей в последнее время довольно широкое распространение ингаляционной анестезии по закрытому контуру (малопоточной анестезии, low-flow anaesthesia). В рециркуляционном контуре FIО2определяется не только настройкой ротаметров, но и минутным потреблением кислорода пациентом и всегда оказывается существенно ниже, чем содержание кислорода в свежей газовой смеси, поступающей в контур. Данное различие тем значительнее, чем меньше приток в контур свежей газонаркотической смеси. При истинной малопоточной анестезии прогнозировать уровень FIO2, ориентируясь на показания ротаметров, практически невозможно, и риску формирования гипоксической смеси в действительности противостоит лишь контроль инспираторной концентрации кислорода. При этом нужно учесть, что быстродействующий оксиметр с парамагнитным датчиком сам способен стать причиной некоторого падения FIO2. Правилами эксплуатации газовых мониторов с непрерывным отбором пробы при малопоточной анестезии рекомендуется возврат тест-газа в контур для сохранения баланса потоков. В парамагнитном кислородном сенсоре в качестве эталонного газа используется атмосферный воздух, который смешивается с пробным газом и направляется в наркозный контур, где разводит азотом рабочую газонаркотическую смесь. Тем не менее медленный или быстрый оксиметр — обязательный компонент системы безопасности малопоточной анестезии.

2 Существует радикальный способ решения подобных проблем — выпуск аппаратуры в соответствии со специальными техническими стандартами безопасности, полностью исключающими вероятность перепутать баллоны или подать и контур закись азота при недостаточном потоке кислорода. К сожалению, огромное количество наркозной и дыхательной аппаратуры, применяемой в нашей стране, сегодня этим стандартам не отвечает.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

источник

Кандидат химических наук О. БЕЛОКОНЕВА.

Как известно, земная атмосфера на 78% состоит из химически нейтрального газа — азота, почти 21% составляет основа всего живого — кислород. Но так было не всегда. Как показывают современные исследования, 150 лет назад содержание кислорода в воздухе достигало 26%, а в доисторические времена динозавры дышали воздухом, в котором кислорода было больше трети. Сегодня все жители земного шара страдают от хронической нехватки кислорода — гипоксии. Особенно нелегко горожанам. Так, под землей (в метро, в переходах и подземных торговых центрах) концентрация кислорода в воздухе составляет 20,4%, в высотных зданиях — 20,3%, а в битком набитом вагоне наземного транспорта — всего лишь 20,2%.

Давно известно, что повышение концентрации кислорода во вдыхаемом воздухе до уровня, установленного природой (около 30%), благотворно сказывается на здоровье человека. Не зря космонавты на Международной космической станции дышат воздухом, содержащим 33% кислорода.

Как уберечься от гипоксии? В Японии у жителей больших городов недавно стали популярными так называемые «кислородные бары». Это своего рода кафе — каждый желающий может заглянуть в них и за небольшую плату в течение 20 минут подышать воздухом, обогащенным кислородом. Клиентов у «кислородных баров» — хоть отбавляй, и их число продолжает расти. Среди них много молодых женщин, но есть и пожилые люди.

Читайте также:  Кагоцел при беременности на ранних

До последнего времени у россиян не было возможности побывать в роли посетителя японского кислородного бара. Но в 2004 году на российский рынок выходит японский прибор для обогащения воздуха кислородом «Oxycool-32» фирмы «YMUP/Yamaha Motors group». Поскольку технология, использованная при создании прибора, действительно нова и уникальна (сейчас на нее оформляется международный патент), читателям наверняка интересно узнать о ней подробнее.

В основе работы нового японского прибора лежит принцип мембранного разделения газов. Атмосферный воздух при обычном давлении подается на полимерную мембрану. Толщина газоразделительного слоя — 0,1 микрометра. Мембрана сделана из высокомолекулярного материала: при высоком давлении она адсорбирует молекулы газов, а при низком — выделяет. Молекулы газов проникают в промежутки между полимерными цепочками. «Медленный газ» азот проникает через мембрану с меньшей скоростью, чем «быстрый» кислород. Величина «запаздывания» азота зависит от разницы парциальных давлений на внешней и внутренней поверхностях мембраны и скорости воздушного потока. На внутренней стороне мембраны давление понижено: 560 мм рт. ст. Соотношение давлений и скорость потока подобраны таким образом, что концентрация азота и кислорода на выходе составляет 69% и 30% соответственно. Обогащенный кислородом воздух выходит со скоростью 3 л/мин.

Газоразделительная мембрана улавливает микроорганизмы и цветочную пыльцу в воздухе. Кроме того, воздушный поток можно пропустить через раствор ароматической эссенции, так что человек будет дышать воздухом не только очищенным от бактерий, вирусов и пыльцы, но и имеющим приятный мягкий аромат.

В прибор «Oxycool-32» встроен ионизатор воздуха, похожий на широко известную в России «люстру Чижевского». Под действием ультрафиолетового излучения происходит эмиссия электронов с титанового наконечника. Электроны ионизуют молекулы кислорода, образуя отрицательно заряженные «аэроионы» в количестве 30 000-50 000 ионов на кубический сантиметр. «Аэроионы» нормализуют потенциал клеточной мембраны, оказывая тем самым на организм общеукрепляющее действие. Кроме того, они заряжают пыль и грязь, взвешенную в городском воздухе в виде мелкодисперсного аэрозоля. В результате пыль оседает, и воздух в помещении становится намного чище.

Кстати, этот малогабаритный прибор можно подключить и к автомобильному источнику питания, что позволит водителю наслаждаться свежим воздухом, даже стоя в многокилометровой «пробке» на московском Садовом кольце.

Основной переносчик кислорода в организме — гемоглобин, который находится в красных кровяных клетках — эритроцитах. Чем больше кислорода эритроциты «доставляют» клеткам организма, тем интенсивнее идет обмен веществ в целом: «сгорают» жиры, а также вещества, вредные для организма; окисляется молочная кислота, накопление которой в мышцах вызывает симптомы усталости; в клетках кожи синтезируется новый коллаген; улучшаются кровообращение и дыхание. Поэтому повышение концентрации кислорода во вдыхаемом воздухе снимает усталость, сонливость и головокружение, ослабляет боль в мышцах и пояснице, стабилизирует кровяное давление, уменьшает одышку, улучшает память и внимательность, налаживает сон, снимает синдром похмелья. Регулярное использование прибора поможет сбросить лишний вес и омолодить кожу. Кислородная терапия также пригодится астматикам, больным, страдающим хроническим бронхитом, тяжелыми формами пневмонии.

Регулярное вдыхание воздуха, обогащенного кислородом, позволит предотвратить гипертонию, атеросклероз, инсульт, импотенцию, а у пожилых людей — остановку дыхания во сне, которая иногда приводит к смертельному исходу. Дополнительный кислород сослужит хорошую службу и больным диабетом — даст возможность уменьшить количество ежедневных инъекций инсулина.

«Oxycool-32», несомненно, найдет применение в спортивных клубах, гостиницах, косметических салонах, офисах, развлекательных комплексах. Но это вовсе не означает, что новый прибор не пригоден для индивидуального применения . Совсем наоборот: в домашних условиях его могут использовать даже дети и пожилые люди. Врачебный контроль при такой восстанавливающей кислородной терапии необязателен. Очень полезно подышать кислородом до или после занятий физкультурой и спортом, после тяжелого рабочего дня или просто для восстановления сил и поддержания тонуса: 15-30 минут утром и 30-45 — вечером.

«Oxycool-32» повышает концентрацию кислорода во вдыхаемом воздухе до уровня, установленного природой. Поэтому прибор безопасен для здоровья. Но, если вы страдаете каким-либо тяжелым хроническим заболеванием, перед началом процедур все же стоит посоветоваться с лечащим врачом.

источник

В отличие от горячих и холодных планет нашей Солнечной системы, на планете Земля существуют условия, которые дают возможность жизни в определенной форме. Одним из главных условий является состав атмосферы, который дает всему живому возможность свободно дышать и защищает от смертельного излучения, царящего в космосе.

Атмосфера Земли состоит из множества газов. В основном это азот, который занимает 77 %. Газ, без которого немыслима жизнь на Земле, занимает гораздо меньший объем, содержание кислорода в воздухе равно 21 % от всего объема атмосферы. Последние 2 % — смесь различных газов, включая аргон, диоксид углерода, гелий, неон, криптон и другие.

В начале существования Земли воздух, который ее окружал, не имел этого газа в своем составе. Это вполне подходило для жизни простейших — одноклеточных молекул, которые плавали в океане. Им кислород не был нужен. Процесс начался примерно 2 млн лет назад, когда первые живые организмы в результате реакции фотосинтеза начали выделять малые дозы этого газа, полученного в результате химических реакций, сначала в океан, затем в атмосферу. Жизнь развилась на планете и приняла разнообразные формы, большинство из которых не дожили до наших времен. Некоторые организмы со временем приспособились к жизни с новым газом.

Они научились использовать его силу безопасно внутри клетки, где она выступала в роли электростанции, для того чтобы добывать энергию из еды. Такой способ использования кислорода называется дыханием, и мы это делаем ежесекундно. Именно дыхание дало возможность для появления более сложных организмов и людей. За миллионы лет содержание в воздухе кислорода взлетело до современного уровня – около 21 %. Накопление этого газа в атмосфере способствовало созданию озонового слоя на высоте 8–30 км от поверхности земли. Вместе с этим планета получила защиту от пагубного действия ультрафиолетовых лучей. Дальнейшая эволюция жизненных форм на воде и на суше стремительно возросла в результате увеличения фотосинтеза.

Хотя некоторые организмы адаптировались к повышающемуся уровню выделяемого газа, многие из простейших форм жизни, которые существовали на Земле, исчезли. Другие организмы выжили, прячась от кислорода. Некоторые из них сегодня живут в корнях бобовых, используя азот из воздуха для построения аминокислот для растений. Смертельный организм ботулизма – еще один «беженец» от кислорода. Он спокойно выживает в вакуумных упаковках с консервированными продуктами.

Преждевременно рожденные малыши, легкие которых еще не полностью раскрыты для дыхания, попадают в специальные инкубаторы. В них содержание кислорода в воздухе по объему выше, и вместо обычных 21 % здесь установлен его уровень 30-40 %. Малыши, имеющие серьезные проблемы дыхания, окружаются воздухом со стопроцентным уровнем кислорода, чтобы предотвратить повреждение детского мозга. Нахождение в таких обстоятельствах совершенствует кислородный режим тканей, пребывающих в состоянии гипоксии, приводит в норму их жизненные функции. Но его чрезмерное количество в воздухе так же опасно, как и недостаток. Чрезмерное количество кислорода в крови ребенка может привести к повреждению кровеносных сосудов в глазах и спровоцировать утрату зрения. Это показывает двойственность свойств газа. Мы должны дышать им, чтобы жить, но его избыток иногда может стать отравой для организма.

При соединении кислорода с водородом или углеродом, совершается реакция, именуемая окислением. Этот процесс заставляет органические молекулы, являющиеся основанием жизни, распадаться. В человеческом организме окисление проходит следующим образом. Эритроциты крови собирают кислород из легких и разносят его по всему телу. Происходит процесс разрушения молекул еды, которую мы употребляем. Этот процесс освобождает энергию, воду и оставляет диосксид углерода. Последний выводится клетками крови обратно в легкие, и мы выдыхаем его в воздух. Человек может задохнуться, если ему помешать дышать дольше, чем 5 минут.

Рассмотрим содержание кислорода во вдыхаемом воздухе. Атмосферный воздух, попадающий извне в легкие при вдыхании, именуется вдыхаемым, а воздух, который выходит наружу через дыхательную систему при выдохе, — выдыхаемым.

Он представляет собой смесь воздуха, заполнявшего альвеолы, с тем, который находится в дыхательных путях. Химический состав воздуха, который здоровый человек вдыхает и выдыхает в естественных условиях, практически не меняется и выражается такими цифрами.

Кислород – главная для жизни составляющая воздуха. Изменения количества этого газа в атмосфере невелики. Если у моря содержание в воздухе кислорода вмещает до 20,99 %, то даже в очень загрязненном воздухе индустриальных городов его уровень не падает ниже 20,5 %. Такие изменения не выявляют воздействия на человеческий организм. Физиологические нарушения проявляются тогда, когда процентное содержание кислорода в воздухе падает до 16-17 %. При этом наблюдается явная кислородная недостаточность, которая ведет к резкому падению жизнедеятельности, а при содержании в воздухе кислорода 7-8 % возможен летальный исход.

Состав атмосферы всегда оказывал воздействие на эволюцию. В разные геологические времена из-за природных катаклизмов наблюдались подъемы или падения уровня кислорода, и это влекло за собой изменение биосистемы. Примерно 300 миллионов лет назад содержание его в атмосфере поднялось до 35 %, при этом наблюдалось заселение планеты насекомыми гигантских размеров. Наибольшее вымирание живых существ в истории Земли случилось около 250 миллионов лет назад. Во время него более чем 90 % обитателей океана и 75 % жителей суши погибло. Одна из версий массового вымирания гласит, что виной тому оказалось низкое содержание в воздухе кислорода. Количество этого газа упало до 12 %, и это — в нижнем слое атмосферы до высоты 5300 метров. В нашу эпоху содержание кислорода в атмосферном воздухе доходит до 20,9 %, что на 0,7 % ниже, чем 800 тысяч лет назад. Эти цифры подтверждены учеными из Принстонского университета, которые исследовали пробы Гренландского и Атлантического льда, образовавшегося в то время. Замерзшая вода сберегла пузырьки воздуха, и этот факт помогает вычислить уровень кислорода в атмосфере.

Активное поглощение его из атмосферы может быть вызвано передвижением ледников. Отодвигаясь, они открывают гигантские площади органических пластов, потребляющих кислород. Еще одним поводом может быть остывание вод Мирового океана: его бактерии при пониженной температуре активнее поглощают кислород. Исследователи утверждают, что индустриальный скачок и вместе с ним сжигание огромного количества топлива особенного воздействия при этом не оказывают. Мировой океан охлаждается в течение 15 миллионов лет, и количество жизненно важного в атмосфере уменьшилось независимо от воздействия человека. Вероятно, на Земле совершаются некоторые природные процессы, ведущие к тому, что потребление кислорода становится выше его производства.

Поговорим о влиянии человека на состав воздуха. Тот уровень, который мы сегодня имеем, идеально подходит для живых существ, содержание кислорода в воздухе составляет 21 %. Баланс его и других газов определяется жизненным циклом в природе: животные выдыхают диоксид углерода, растения используют его и выделяют кислород.

источник