Антибиотики. Основные классификации антибиотиков. Классификация по химическому строению. Механизм антимикробного действия антибиотиков.
Антибиотики — группа соединений природного происхождения или их полусинтетических и синтетических аналогов, обладающих антимикробным или противоопухолевым действием.
К настоящему времени известно несколько сотен подобных веществ, но лишь немногие из них нашли применение в медицине.
В основу классификации антибиотиков также положено несколько разных принципов.
По способу получения их делят:
- на природные;
- синтетические;
- полусинтетические (на начальном этапе получают естественным путем, затем синтез ведут искусственно).
- по преимуществу актиномицеты и плесневые грибы;
- бактерии (полимиксины);
- высшие растения (фитонциды);
- ткани животных и рыб (эритрин, эктерицид).
По направленности действия:
- антибактериальные;
- противогрибковые;
- противоопухолевые.
По спектру действия — числу видов микроорганизмов, на которые действуют антибиотики:
- препараты широкого спектра действия (цефалоспорины 3-го поколения, макролиды);
- препараты узкого спектра действия (циклосерин, линкомицин, бензилпенициллин, клиндамицин). В некоторых случаях могут быть предпочтительнее, так как не подавляют нормальную микрофлору.
- на бета-лактамные антибиотики;
- аминогликозиды;
- тетрациклины;
- макролиды;
- линкозамиды;
- гликопептиды;
- полипептиды;
- полиены;
- антрациклиновые антибиотики.
Основу молекулы бета-лактамных антибиотиков составляет бета-лактамное кольцо. К ним относятся:
группа природных и полусинтетических антибиотиков, молекула которых содержит 6-аминопенициллано-вую кислоту, состоящую из 2 колец — тиазолидонового и бета-лактамного. Среди них выделяют:
. биосинтетические (пенициллин G — бензилпенициллин);
- аминопенициллины (амоксициллин, ампициллин, бекампи-циллин);
. полусинтетические «антистафилококковые» пенициллины (оксациллин, метициллин, клоксациллин, диклоксациллин, флуклоксациллин), основное преимущество которых — устойчивость к микробным бета-лактамазам, в первую очередь стафилококковым;
- цефалоспорины — это природные и полусинтетические антибиотики, полученные на основе 7-аминоцефалоспориновой кислоты и содержащие цефемовое (также бета-лактамное) кольцо,
т. е. по структуре они близки к пенициллинам. Они делятся на иефалоспорины:
1-го поколения — цепорин, цефалотин, цефалексин;
- 2-го поколения — цефазолин (кефзол), цефамезин, цефаман-дол (мандол);
- 3-го поколения — цефуроксим (кетоцеф), цефотаксим (кла-форан), цефуроксим аксетил (зиннат), цефтриаксон (лонга-цеф), цефтазидим (фортум);
- 4-го поколения — цефепим, цефпиром (цефром, кейтен) и др.;
- монобактамы — азтреонам (азактам, небактам);
- карбопенемы — меропенем (меронем) и имипинем, применяемый только в комбинации со специфическим ингибитором почечной дегидропептидазы циластатином — имипинем/цилас-татин (тиенам).
Аминогликозиды содержат аминосахара, соединенные глико-зидной связью с остальной частью (агликоновым фрагментом) молекулы. К ним относятся:
- синтетические аминогликозиды — стрептомицин, гентамицин (гарамицин), канамицин, неомицин, мономицин, сизомицин, тобрамицин (тобра);
- полусинтетические аминогликозиды — спектиномицин, амика-цин (амикин), нетилмицин (нетиллин).
Основу молекулы тетрациклинов составляет полифункциональное гидронафтаценовое соединение с родовым названием тетрациклин. Среди них имеются:
- природные тетрациклины — тетрациклин, окситетрациклин (клинимицин);
- полусинтетические тетрациклины — метациклин, хлортетрин, доксициклин (вибрамицин), миноциклин, ролитетрациклин. Препараты группы макролидв содержат в своей молекуле мак-роциклическое лактоновое кольцо, связанное с одним или несколькими углеводными остатками. К ним относятся:
- эритромицин;
- олеандомицин;
- рокситромицин (рулид);
- азитромицин (сумамед);
- кларитромицин (клацид);
- спирамицин;
- диритромицин.
К линкозамидам относятся линкомицин и клиндамицин. Фармакологические и биологические свойства этих антибиотиков очень близки к макролидам, и, хотя в химическом отношении это совершенно иные препараты, некоторые медицинские источники и фармацевтические фирмы — производители хими-опрепаратов, например делацина С, относят линкозамины к группе макролидов.
Препараты группы гликопептидов в своей молекуле содержат замещенные пептидные соединения. К ним относятся:
Препараты группы полипептидов в своей молекуле содержат остатки полипептидных соединений, к ним относятся:
Препараты группы поливное в своей молекуле содержат несколько сопряженных двойных связей. К ним относятся:
Есть еще несколько достаточно широко используемых в настоящее время в практике антибиотиков, не относящихся ни к одной из перечисленных групп: фосфомицин, фузидиевая кислота (фузидин), рифампицин.
В основе антимикробного действия антибиотиков, как и других химиотерапевтических средств, лежит нарушение мгтабо-лизма микробных клеток.
- ингибиторы синтеза клеточной стенки (муреина);
- вызывающие повреждение цитоплазматической мембраны;
- подавляющие белковый синтез;
- ингибиторы синтеза нуклеиновых кислот.
- бета-лактамные антибиотики — пенициллины, цефалоспори-ны, монобактамы и карбопенемы;
- гликопептиды — ванкомицин, клиндамицин.
Механизм блокады синтеза бактериальной клеточной стенки ванкомицином. отличается от такового у пенициллинов и це-фалоспоринов и соответственно не конкурирует с ними за места связывания. Поскольку пептидогликана нет в стенках животных клеток, то эти антибиотики обладают очень низкой токсичностью для макроорганизма, и их можно применять в высоких дозах (мегатерапия).
К антибиотикам, вызывающим повреждение цитоплазматической мембраны (блокирование фосфолипидных или белковых компонентов, нарушение проницаемости клеточных мембран, изменение мембранного потенциала и т. д.), относятся:
- полиеновые антибиотики — обладают ярко выраженной противогрибковой активностью, изменяя проницаемость клеточной мембраны путем взаимодействия (блокирования) со стероидными компонентами, входящими в ее состав именно у грибов, а не у бактерий;
- полипептидные антибиотики.
Самая многочисленная группа антибиотиков — подавляющие белковый синтез. Нарушение синтеза белка может происходить на всех уровнях, начиная с процесса считывания информации с ДНК и кончая взаимодействием с рибосомами — блокирование связывания транспортной т-РНК с ЗОБ-субъединицами рибосом (аминогликозиды), с 508-субъединицами рибосом (макро-лиды) или с информационной и-РНК (на 308-субъединице рибосом — тетрациклины). В эту группу входят:
- аминогликозиды (например, аминогликозид гентамицин, угнетая белковый синтез в бактериальной клетке, способен нарушать синтез белковой оболочки вирусов и поэтому может обладать противовирусным действием);
- макролиды;
- тетрациклины;
- хлорамфеникол (левомицетин), нарушающий синтез белка микробной клеткой на стадии переноса аминокислот на рибосомы.
Ингибиторы синтеза нуклеиновых кислот обладают не только антимикробной, но и цитостатической активностью и поэтому используются как противоопухолевые средства. Один из антибиотиков, относящихся к этой группе, — рифампицин — инги-бирует ДНК-зависимую РНК-полимеразу и тем самым блокирует синтез белка на уровне транскрипции.
источник
Антибиотики — химиотерапевтические вещества, продуцируемые микроорганизмами, животными клетками, растениями, а также их производные и синтетические продукты, которые обладают избирательной способностью угнетать и задерживать рост микроорганизмов, а также подавлять развитие злокачественных новообразований.
В основу главной классификации антибиотиков положено их химическое строение.
Наиболее важными классами синтетических антибиотиков являются хинолоны и фторхинолоны (например, ципрофлоксацин), сульфаниламиды (сульфадиметоксин), имидазолы (метронидазол), нитрофураны (фурадонин, фурагин).
По спектру действия антибиотики делят на пять групп в зависимости от того, на какие микроорганизмы они оказывают воздействие. Кроме того, существуют противоопухолевые антибиотики, продуцентами которых также являются актиномицеты. Каждая из этих групп включает две подгруппы: антибиотики широкого и узкого спектра действия.
Антибактериальные антибиотики составляют самую многочисленную группу препаратов. Преобладают в ней антибиотики широкого спектра действия, оказывающие влияние на представителей всех трех отделов бактерий. К антибиотикам широкого спектра действия относятся аминогликозиды, тетрациклины и др. Антибиотики узкого спектра действия эффективны в отношении небольшого круга бактерий, например полет-миксины действуют на грациликутные, ванкомицин влияет на грамположительные бактерии.
В отдельные группы выделяют противотуберкулезные, противолепрозные, противосифилитические препараты.
Противогрибковые антибиотики включают значительно меньшее число препаратов. Широким спектром действия обладает, например, амфотерицин В, эффективный при кандидозах, бластомикозах, аспергиллезах; в то же время нистатин, действующий на грибы рода Candida, является антибиотиком узкого спектра действия.
Антипротозойные и антивирусные антибиотики насчитывают небольшое число препаратов.
Противоопухолевые антибиотики представлены препаратами, обладающими цитотоксическим действием. Большинство из них применяют при многих видах опухолей, например митоми-цин С.
Действие антибиотиков на микроорганизмы связано с их способностью подавлять те или иные биохимические реакции, происходящие в микробной клетке.
В зависимости от механизма действия различают пять групп антибиотиков:
1. антибиотики, нарушающие синтез клеточной стенки. К этой группе относятся, например,
β-лактамы. Препараты этой группы характеризуются самой высокой избирательностью действия: они убивают бактерии и не оказывают влияния на клетки микроорганизма, так как последние не имеют главного компонента клеточной стенки бактерий — пептидогликана. В связи с этим β -лактамные антибиотики являются наименее токсичными для макроорганизма;
2. антибиотики, нарушающие молекулярную организацию и синтез клеточных мембран. Примерами подобных препаратов являются полимиксины, полиены;
3. антибиотики, нарушающие синтез белка; это наиболее многочисленная группа препаратов. Представителями этой группы являются аминогликозиды, тетрациклины, макроли-ды, левомицетин, вызывающие нарушение синтеза белка на разных уровнях;
4. антибиотики — ингибиторы синтеза нуклеиновых кислот. Например, хинолоны нарушают синтез ДНК, рифампицин — синтез РНК;
5. антибиотики, подавляющие синтез пуринов и аминокислот. К этой группе относятся, например, сульфаниламиды.
Не нашли то, что искали? Воспользуйтесь поиском:
Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: «Что-то тут концом пахнет». 8181 — | 7872 —
или читать все.
95.83.2.240 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.
Отключите adBlock!
и обновите страницу (F5)
очень нужно
источник
За тот период, который прошел со времени открытия П.Эрлиха, было получено более 10 000 различных антибиотиков, поэтому важной проблемой являлась систематизация этих препаратов. В настоящее время существуют различные классификации антибиотиков, однако ни одна из них не является общепринятой.
В основу главной классификации антибиотиков положено их химическое строение.
Наиболее важными классами синтетических антибиотиков являются хинолоны и фторхинолоны (например, ципрофлоксацин), сульфаниламиды (сульфадиметоксин), имидазолы (метронидазол), нитрофураны (фурадонин, фурагин).
По спектру действия антибиотики делят на пять групп в зависимости от того, на какие микроорганизмы они оказывают воздействие. Кроме того, существуют противоопухолевые антибиотики, продуцентами которых также являются актиномицеты. Каждая из этих групп включает две подгруппы: антибиотики широкого и узкого спектра действия.
Антибактериальные антибиотики составляют самую многочисленную группу препаратов. Преобладают в ней антибиотики широкого спектра действия, оказывающие влияние на представителей всех трех отделов бактерий. К антибиотикам широкого спектра действия относятся аминогликозиды, тетрациклины и др. Антибиотики узкого спектра действия эффективны в отношении небольшого круга бактерий, например полет-миксины действуют на грациликутные, ванкомицин влияет на грамположительные бактерии.
В отдельные группы выделяют противотуберкулезные, противолепрозные, противосифилитические препараты.
Противогрибковые антибиотики включают значительно меньшее число препаратов. Широким спектром действия обладает, например, амфотерицин В, эффективный при кандидозах, бластомикозах, аспергиллезах; в то же время нистатин, действующий на грибы рода Candida, является антибиотиком узкого спектра действия.
Антипротозойные и антивирусные антибиотики насчитывают небольшое число препаратов.
Противоопухолевые антибиотики представлены препаратами, обладающими цитотоксическим действием. Большинство из них применяют при многих видах опухолей, например митомицин С.
Действие антибиотиков на микроорганизмы связано с их способностью подавлять те или иные биохимические реакции, происходящие в микробной клетке.
В зависимости от механизма действия различают пять групп антибиотиков:
1. антибиотики, нарушающие синтез клеточной стенки. К этой группе относятся, например, β-лактамы. Препараты этой группы характеризуются самой высокой избирательностью действия: они убивают бактерии и не оказывают влияния на клетки микроорганизма, так как последние не имеют главного компонента клеточной стенки бактерий — пептидогликана. В связи с этим β -лактамные антибиотики являются наименее токсичными для макроорганизма;
2. антибиотики, нарушающие молекулярную организацию и синтез клеточных мембран. Примерами подобных препаратов являются полимиксины, полиены;
3. антибиотики, нарушающие синтез белка; это наиболее многочисленная группа препаратов. Представителями этой группы являются аминогликозиды, тетрациклины, макроли-ды, левомицетин, вызывающие нарушение синтеза белка на разных уровнях;
4. антибиотики — ингибиторы синтеза нуклеиновых кислот. Например, хинолоны нарушают синтез ДНК, рифампицин — синтез РНК;
5. антибиотики, подавляющие синтез пуринов и аминокислот. К этой группе относятся, например, сульфаниламиды.
37 Осложнения антибиотикотерапии, их предупреждение.
Как и всякие лекарственные средства, практически каждая группа антимикробных химиопрепаратов может оказывать побочное действие, причем и на макроорганизм, и на микробы, и на другие лекарственные средства.
Осложнения со стороны макроорганизма
Наиболее частыми осложнениями антимикробной химиотерапии являются:
Токсическое действие препаратов. Как правило, развитие этого осложнения зависит от свойств самого препарата, его дозы, способа введения, состояния больного и проявляется только при длительном и систематическом применении антимикробных химиотерапевтических препаратов, когда создаются условия для их накопления в организме. Особенно часто такие осложнения бывают, когда мишенью действия препарата являются процессы или структуры, близкие по составу или строению к аналогичным структурам клеток макроорганизма. Токсическому действию антимикробных препаратов особенно подвержены дети, беременные, а также пациенты с нарушением функций печени, почек.
Побочное токсическое влияние может проявляться как нейротоксическое (например, гликопептиды и аминогликозиды оказывают ототоксическое действие, вплоть до полной потери слуха за счет воздействия на слуховой нерв); нефротоксическое (полиены, полипептиды, аминогликозиды, макролиды, гликопептиды, сульфаниламиды); общетоксическое (противогрибковые препараты — полиены, имидазолы); угнетение кроветворения (тетрациклины, сульфаниламиды, левомицетин/хлорамфеникол, который содержит нитробензен — супрессор функции костного мозга); тератогенное [аминогликозиды, тетрациклины нарушают развитие костей, хрящей у плода и детей, формирование зубной эмали (коричневая окраска зубов), левомицетин/хлорамфеникол токсичен для новорожденных, у которых ферменты печени не полностью сформированы («синдром серого ребенка»), хинолоны — действуют на развивающуюся хрящевую и соединительную ткани].
Предупреждение осложнений состоит в отказе от противопоказанных данному пациенту препаратов, контроле за состоянием функций печени, почек и т. п.
Дисбиоз (дисбактериоз). Антимикробные химиопрепараты, особенно широкого спектра, могут воздействовать не только на возбудителей инфекций, но и на чувствительные микроорганизмы нормальной микрофлоры. В результате формируется дисбиоз, поэтому нарушаются функции ЖКТ, возникает авитаминоз и может развиться вторичная инфекция (в том числе эндогенная, например кандидоз, псевдомембранозный колит). Предупреждение последствий такого рода осложнений состоит в назначении, по возможности, препаратов узкого спектра действия, сочетании лечения основного заболевания с противогрибковой терапией (например, назначением нистатина), витаминотерапей, применением эубиотиков и т. п.
Отрицательное воздействие на иммунную систему.К этой группе осложнений относят прежде всего аллергические реакции. Причинами развития гиперчувствительности может быть сам препарат, продукты его распада, а также комплекс препарата с сывороточными белками. Возникновение такого рода осложнений зависит от свойств самого препарата, от способа и кратности его введения, индивидуальной чувствительности пациента к препарату. Аллергические реакции развиваются примерно в 10 % случаев и проявляются в виде сыпи, зуда, крапивницы, отека Квинке. Относительно редко встречается такая тяжелая форма проявления аллергии, как анафилактический шок. Такое осложнение чаще дают бета-лактамы (пенициллины), рифамицины. Сульфаниламиды могут вызвать гиперчувствительность замедленного типа. Предупреждение осложнений состоит в тщательном сборе аллергоанамнеза и назначении препаратов в соответствии с индивидуальной чувствительностью пациента. Кроме того, антибиотики обладают некоторым иммунодепрессивным действием и могут способствовать развитию вторичного иммунодефицита и ослаблению напряженности иммунитета.
Эндотоксический шок (терапевтический).Это явление, которое возникает при лечении инфекций, вызванных грамотрицательными бактериями. Введение антибиотиков вызывает гибель и разрушение клеток и высвобождение больших количеств эндотоксина. Это закономерное явление, которое сопровождается временным ухудшением клинического состояния больного.
Взаимодействие с другими препаратами.Антибиотики могут способствовать потенцированию действия или инактивации других препаратов (например, эритромицин стимулирует выработку ферментов печени, которые начинают ускоренно метаболизировать лекарственные средства разного назначения).
Побочное воздействие на микроорганизмы.
Применение антимикробных химиопрепа-ратов оказывает на микробы не только прямое угнетающее или губительное воздействие, но также может привести к формированию атипичных форм микробов (например, к образованию L-форм бактерий или изменению других свойств микробов, что значительно затрудняет диагностику инфекционных заболеваний) и персистирующих форм микробов. Широкое использование антимикробных лекарственных средств ведет также к формированию антибиотикозависимости (редко) и лекарственной устойчивости — антибиотикорезистентности (достаточно часто).
38 Механизмы лекарственной устойчивости возбудителей инфекционных болезней. Пути ее преодоления.
Антибиотикорезистентность — это устойчивость микробов к антимикробным химиопрепаратам. Бактерии следует считать резистентными, если они не обезвреживаются такими концентрациями препарата, которые реально создаются в макроорганизме. Резистентность может быть природной и приобретенной.
Природная устойчивость. Некоторые виды микробов природно устойчивы к определенным семействам антибиотиков или в результате отсутствия соответствующей мишени (например, микоплазмы не имеют клеточной стенки, поэтому не чувствительны ко всем препаратам, действующим на этом уровне), или в результате бактериальной непроницаемости для данного препарата (например, грамотрицательные микробы менее проницаемы для крупномолекулярных соединений, чем грамположительные бактерии, так как их наружная мембрана имеет «маленькие» поры).
Приобретенная устойчивость. Приобретение резистентности — это биологическая закономерность, связанная с адаптацией микроорганизмов к условиям внешней среды. Она, хотя и в разной степени, справедлива для всех бактерий и всех антибиотиков. К химиопрепаратам адаптируются не только бактерии, но и остальные микробы — от эукариотических форм (простейшие, грибы) до вирусов. Проблема формирования и распространения лекарственной резистентности микробов особенно значима для внутрибольничных инфекций, вызываемых так называемыми «госпитальными штаммами», у которых, как правило, наблюдается множественная устойчивость к антибиотикам (так называемая полирезистентность).
Генетические основы приобретенной резистентности. Устойчивость к антибиотикам определяется и поддерживается генами резистентности (r-генами) и условиями, способствующими их распространению в микробных популяциях. Приобретенная лекарственная устойчивость может возникать и распространяться в популяции бактерий в результате:
•мутаций в хромосоме бактериальной клетки с последующей селекцией (т. е. отбором) мутантов.Особенно легко селекция происходит в присутствии антибиотиков, так как в этих условиях мутанты получают преимущество перед остальными клетками популяции, которые чувствительны к препарату. Мутации возникают независимо от применения антибиотика, т. е. сам препарат не влияет на частоту мутаций и не является их причиной, но служит фактором отбора. Далее резистентные клетки дают потомство и могут передаваться в организм следующего хозяина (человека или животного), формируя и распространяя резистентные штаммы. Мутации могут быть: 1) единичные (если мутация произошла в одной клетке, в результате чего в ней синтезируются измененные белки) и 2) множественные (серия мутаций, в результате чего изменяется не один, а целый набор белков, например пени-циллинсвязывающих белков у пенициллин-резистентного пневмококка);
• переноса трансмиссивных плазмид резистентности (R-плазмид).Плазмиды резистентности (трансмиссивные) обычно кодируют перекрестную устойчивость к нескольким семействам антибиотиков. Впервые такая множественная резистентность была описана японскими исследователями в отношении кишечных бактерий. Сейчас показано, что она встречается и у других групп бактерий. Некоторые плазмиды могут передаваться между бактериями разных видов, поэтому один и тот же ген резистентности можно встретить у бактерий, таксономически далеких друг от друга. Например, бета-лактамаза, кодируемая плазмидой ТЕМ-1, широко распространена уграмотрицательных бактерий и встречается укишечной палочки и других кишечных бактерий, а также у гонококка, резистентного кпенициллину, и гемофильной палочки, резистентной к ампициллину;
• переноса транспозонов, несущих r-гены(или мигрирующих генетических последовательностей). Транспозоны могут мигрировать с хромосомы на плазмиду и обратно, а также с плазмиды на другую плазмиду. Таким образом гены резистентности могут передаваться далее дочерним клеткам или при рекомбинации другим бактериям-реципиентам.
Реализация приобретенной устойчивости. Изменения в геноме бактерий приводят к тому, что меняются и некоторые свойства бактериальной клетки, в результате чего она становится устойчивой к антибактериальным препаратам. Обычно антимикробный эффект препарата осуществляется таким образом: агент должен связаться с бактерией и пройти сквозь ее оболочку, затем он должен быть доставлен к месту действия, после чего препарат взаимодействует с внутриклеточными мишенями. Реализация приобретенной лекарственной устойчивости возможна на каждом из следующих этапов:
• модификация мишени.Фермент-мишень может быть так изменен, что его функции не нарушаются, но способность связываться с химиопрепаратом (аффинность) резко снижается или может быть включен «обходной путь» метаболизма, т. е. в клетке активируется другой фермент, который не подвержен действию данного препарата.
• «недоступность» мишениза счет снижения проницаемости клеточной стенки и клеточных мембран или «эффлюко-механизма, когда клетка как бы «выталкивает» из себя антибиотик.
• инактивация препарата бактериальными ферментами.Некоторые бактерии способны продуцировать особые ферменты, которые делают препараты неактивными (например, бета-лактамазы, аминогликозид-модифицирующие ферменты, хлорамфениколацетилтрансфераза). Бета-лактамазы — это ферменты, разрушающие бета-лактамное кольцо с образованием неактивных соединений. Гены, кодирующие эти ферменты, широко распространены среди бактерий и могут быть как в составе хромосомы, так и в составе плазмиды.
Для борьбы с инактивирующим действием бета-лактамаз используют вещества — ингибиторы (например, клавулановую кислоту, сульбактам, тазобактам). Эти вещества содержат в своем составе бета-лактамное кольцо и способны связываться с бета-лактамазами, предотвращая их разрушительное действие на бета-лактамы. При этом собственная антибактериальная активность таких ингибиторов низкая. Клавулановая кислота ингибирует большинство известныхбета-лактамаз. Ее комбинируют с пеницил-линами: амоксициллином, тикарциллином, пиперациллином.
Предупредить развитие антибиотикорезистентности у бактерий практически невозможно, но необходимо использовать антимикробные препараты таким образом, чтобы не способствовать развитию и распространению устойчивости (в частности, применять антибиотики строго по показаниям, избегать их использования с профилактической целью, через 10—15 дней ан-тибиотикотерапии менять препарат, по возможности использовать препараты узкого спектра действия, ограниченно применять антибиотики в ветеринарии и не использовать их как фактор роста).
39 Методы определения чувствительности бактерий к антибиотикам.
Для определения чувствительности бактерий к антибиотикам (антибиотикограммы)обычно применяют:
• Метод диффузии в агар. На агаризованную питательную среду засевают исследуемый микроб, а затем вносят антибиотики. Обычно препараты вносят или в специальные лунки в агаре, или на поверхности посева раскладывают диски с антибиотиками («метод дисков»). Учет результатов проводят через сутки по наличию или отсутствию роста микробов вокруг лунок (дисков). Метод дисков — качественныйи позволяет оценить, чувствителен или устойчив микроб к препарату.
Определение чувствительности бактерий к антибиотикам методом дисков.Исследуемую бактериальную культуру засевают газоном на питательный агар или среду АГВ в чашке Петри.
Среда АГВ: сухой питательный рыбный бульон, агар-агар, натрий фосфат двузамещенный. Среду готовят из сухого порошка в соответствии с инструкцией.
На засеянную поверхность пинцетом помещают на одинаковом расстоянии друг от друга бумажные диски, содержащие определенные дозы разных антибиотиков. Посевы инкубируют при 37 °С до следующего дня. По диаметру зон задержки роста исследуемой культуры бактерий судят о ее чувствительности к антибиотикам.
Для получения достоверных результатов необходимо применять стандартные диски и питательные среды, для контроля которых используются эталонные штаммы соответствующих микроорганизмов. Метод дисков не дает надежных данных при определении чувствительности микроорганизмов к плохо диффундирующим в агар полипептидным антибиотикам (например, полимиксин, ристомицин). Если эти антибиотики предполагается использовать для лечения, рекомендуется определять чувствительность микроорганизмов методом серийных разведений.
Определение чувствительности бактерий к антибиотикам методом серийных разведений.Данным методом определяют минимальную концентрацию антибиотика, ингибирующую рост исследуемой культуры бактерий. Вначале готовят основной раствор, содержащий определенную концентрацию антибиотика (мкг/мл или ЕД/мл) в специальном растворителе или буферном растворе. Из него готовят все последующие разведения в бульоне (в объеме 1 мл), после чего к каждому разведению добавляют 0,1 мл исследуемой бактериальной суспензии, содержащей 10 6 —10 7 бактериальных клеток в 1 мл. В последнюю пробирку вносят 1 мл бульона и 0,1 мл суспензии бактерий (контроль культуры). Посевы инкубируют при 37 °С до следующего дня, после чего отмечают результаты опыта по помутнению питательной среды, сравнивая с контролем культуры. Последняя пробирка с прозрачной питательной средой указывает на задержку роста исследуемой культуры бактерий под влиянием содержащейся в ней минимальной ингибирующей концентрации (МИК) антибиотика.
Оценку результатов определения чувствительности микроорганизмов к антибиотикам проводят по специальной готовой таблице, которая содержит пограничные значения диаметров зон задержки роста для устойчивых, умеренно устойчивых и чувствительных штаммов, а также значения МИК антибиотиков для устойчивых и чувствительных штаммов.
К чувствительным относятся штаммы микроорганизмов, рост которых подавляется при концентрациях препарата, обнаруживаемых в сыворотке крови больного при использовании обычных доз антибиотиков. К умеренно устойчивым относятся штаммы, для подавления роста которых требуются концентрации, создающиеся в сыворотке крови при введении максимальных доз препарата. Устойчивыми являются микроорганизмы, рост которых не подавляется препаратом в концентрациях, создаваемых в организме при использовании максимально допустимых доз.
40 Принципы рациональной антибиотикотерапии.
Профилактика развития осложнений состоит прежде всего в соблюдении принципов рациональной антибиотикотерапии(антимикробной химиотерапии):
• Микробиологический принцип.До назначения препарата следует установить возбудителя инфекции и определить его индивидуальную чувствительность к антимикробным химиотерапевтическим препаратам. По результатам антибиотикограммы больному назначают препарат узкого спектра действия, обладающий наиболее выраженной активностью в отношении конкретного возбудителя, в дозе, в 2—3 раза превышающей минимальную ингибирующую концентрацию. Если возбудитель пока неизвестен, то обычно назначают препараты более широкого спектра, активные в отношении всех возможных микробов, наиболее часто вызывающих данную патологию. Коррекцию лечения проводят с учетом результатов бактериологического исследования и определения индивидуальной чувствительности конкретного возбудителя (обычно через 2-3 дня). Начинать лечение инфекции нужно как можно раньше (во-первых, в начале заболевания микробов в организме меньше, во-вторых, препараты активнее действуют на растущих и размножающихся микробов).
• Фармакологический принцип.Учитывают особенности препарата — его фармакокинетику и фармакодинамику, распределение в организме, кратность введения, возможность сочетания препаратов и т. п. Дозы препаратов должны быть достаточными для того, чтобы обеспечить в биологических жидкостях и тканях микробостатические или микробоцидные концентрации. Необходимо представлять оптимальную продолжительность лечения, так как клиническое улучшение не является основанием для отмены препарата, потому что в организме могут сохраняться возбудители и может быть рецидив болезни. Учитывают также оптимальные пути введения препарата, так как многие антибиотики плохо всасываются из ЖКТ или не проникают через гематоэнцефалический барьер.
• Клинический принцип.При назначении препарата учитывают, насколько безопасным он будет для данного пациента, что зависит от индивидуальных особенностей состояния больного (тяжесть инфекции, иммунный статус, пол, наличие беременности, возраст, состояние функции печени и почек, сопутствующие заболевания и т.п.) При тяжелых, угрожающих жизни инфек-циях особое значение имеет своевременная ан-тибиотикотерапия. Таким пациентам назначают комбинации из двух-трех препаратов, чтобы обеспечить максимально широкий спектр действия. При назначении комбинации из нескольких препаратов следует знать, насколько эффективным против возбудителя и безопасным для пациента будет сочетание данных препаратов, т. е. чтобы не было антагонизма лекарственных средств в отношении антибактериальной активности и не было суммирования их токсических эффектов.
• Эпидемиологический принцип.Выбор препарата, особенно для стационарного больного, должен учитывать состояние резистентности микробных штаммов, циркулирующих в данном отделении, стационаре и даже регионе. Следует помнить, что антибиотикоре-зистентность может не только приобретаться, но и теряться, при этом восстанавливается природная чувствительность микроорганизма к препарату. Не изменяется только природная устойчивость.
• Фармацевтический принцип.Необходимо учитывать срок годности и соблюдать правила хранения препарата, так как при нарушении этих правил антибиотик может не только потерять свою активность, но и стать токсичным за счет деградации. Немаловажна также и стоимость препарата.
источник
Антибиотики- химические вещества биологического происхождения ,избирательно тормозящие рост и размножение или убивающие микроорганизмы.
Классификация антибиотиков по химической структуре:
1)Беталактамиды:Антибиотики, в молекуле которых присутствует β-
лактамныйцикл.бициклические: производные 6-аминопеницил-
лановой кислоты (пенициллины:ампициллин,уреидопенициллин,бензопенициллин); производные 7-аминоцефалоспорановой кислоты (цефалоспорины:цефазолин,цефуроксим,цефотаксим,цефипим)
2)Макролиды иазалидыАнтибиотики, содержащие в молекуле лактонное кольцо,
в состав которого входят 14 – 16 атомов. У азалидов(азитромицин) в цикле присутствует атом азота.
14-членные макролиды (эритромицин, олеандоми-
цин, кларитромицин, рокситромицин и др.)
15-членные азалиды (азитромицин);
16-членные макролиды (спирамицин и др.)
3) Аминогликозиды(аминоциклитолы)Антибиотики, в молекулах которых присутствует струк-
тура циклогексана с OH- и NH2- или гуанидино-
заместителями с гликозидными заместителями по одной
производные D-стрептидина (стрептомицин);
производные 2-дезокси-D-стрептамина (канамицин,гентамицин, амикацин)
4)ТетрациклиныАнтибиотики, в молекулах которых присутствует час-
тичногидрированное ядро тетрацена
тетрациклин, окситетрациклин, доксициклин и т.д.
5)АмфениколыПрактическое значение имеет хлорамфеникол (левоми-
цетин), который по химической структуре относится к
6)Антибиотики другой структуры
полиеновые антибиотики (нистатин, леворин,амфотерицин В) –макролиды, молекулы которых содержат систему сопряжённых двойных связей;
гликопептиды(ванкомицин) и др.
анзамицины — группа антибиотиков, образуемых лучистым грибком Streptomycesmediterranei. Трансформация химической структуры природных анзамицинов (рифамицинов) позволила получить полусинтетические производные — рифампицин (основной представитель).антибиотики, содержащие в молекулах ароматическое ядро (как правило,нафталиновое), к которому в двух положениях присоединена алифатическаяцепь, состоящая из 15 – 20 атомов углерода
полипептиды (полимиксины В, Е, М)
Классификация по спектру действия.Спектром действия антибиотика называют набор микроорганизмов, на которые антибиотик способен оказывать влияние. В зависимости от спектра действия антибиотики могут быть:
1)влияющие преимущественно на грамположительные микроор-
ганизмы (бензилпенициллин, эритромицин);
2) влияющие преимущественно на грамотрицательные микроор-
ганизмы (уреидопенициллины, монобактамы);
3)широкого спектра действия (тетрациклины, аминогликозиды)
4)противотуберкулёзные антибиотики (стрептомицин, рифампи-
5)противогрибковые антибиотики (нистатин, грамицидин);
6)антибиотики, влияющие на простейших (трихомицин);
7)противоопухолевые антибиотики (адриамицин, оливомицин).
42.Принципы химиотерапии инфекционных болезней.Химиотерапевтические препараты и их общая характеристика.
1.Рациональный выбор препарата на основе клинического и бактериологического диагноза с учетом состояния и особенностей больного, его аллергологического анамнеза и чувствительности возбудителей к ХТС
2.Выбор оптимальных доз, путей введения и интервалов между приемами препарата с учетом возраста, массы тела, состояния больного, локализации и тяжести инфекционного процесса, фармакокинетики препарата с целью создания эффективной концентрации в организме.
3.Определение оптимального курса лечения. При острых инфекциях действие ХТС проявляется быстрее, поэтому требуется более короткая интенсивная терапия, которая должна продолжаться еще 2–3 дня после исчезновения клинических симптомов заболевания. При подострых и хронических инфекциях ХТС действуют, как правило, медленнее, поэтому курс терапии должен быть более продолжительным и при необходимости повторяться. Преждевременная отмена препарата способствует возникновению резистентных форм микробов или рецидива заболевания.
4.Комбинированное применение ХТС с целью усиления лечебного эффекта, ослабления побочного действия и уменьшения вероятности развития устойчивых форм микроорганизмов.
ХТС можно классифицировать по структуре и применению: 1) антибиотики; 2) сульфаниламидные средства; 3) производные нитрофурана;;4)производные нитромидазола.5)хинолоны;6)Диаминопиримидины;7)Противосифилитические препараты;8)противотуберкулёзные препараты;9)Азолы
1.Антибиотики- химические вещества биологического происхождения ,избирательно тормозящие рост и размножение или убивающие микроорганизмы-антибактериальные препараты,мишенями которых служат различные клеточные структуры и органоиды.В зависимости от спектра действия антибиотики могут быть:
1)влияющие преимущественно на грамположительные микроорганизмы (бензилпенициллин, эритромицин);
2) влияющие преимущественно на грамотрицательные микроор-
ганизмы (уреидопенициллины, монобактамы);
3)широкого спектра действия (тетрациклины, аминогликозиды)
4)противотуберкулёзные антибиотики (стрептомицин, рифампи-
5)противогрибковые антибиотики (нистатин, грамицидин);
6)антибиотики, влияющие на простейших (трихомицин)
7)противоопухолевые антибиотики (адриамицин, оливомицин).
2.Сульфаниламидные средства-производные амидасульфациловойкислоты.К ним относятся:сульфадимидин,сульфатиазол,сульфадиметоксин,сульфаметоксазол.Имеют широкий спектр действия,активны в отношение кокков,представителей кишечного семейства,хламидий).Но их использование привело к резистентности к ним штаммов микроорганизмов,поэтому применяют комбинированные препаратыиз сульфаниламида и триметоприма.кКним относятся бисептол,сульфатон.Они оказывают бактерицидное действие на грам+ и грам_ бактерии,применяют для лечения верхних дыхательных путей,мочевыводящих путей и др.Помеханизму действия-антиметаболиты,которые включаются в биохимические процессы,нарушаяих,что приводит к угнетению роста и гибели клетки.
3.Производные нитрофурана-синтетические нитрофуранальдегиды,выывающие бактерицидный эффект.Их применяют как интисептикиместно(фурацилин).Как химиотерапевтическое средство для лечения инфекций ЖКТ и мочевыводящих путей(фуразолидон,фурагин,нитрофурантоин).Кним чувствительны бактерии,устойчивые к антибиотикам и сульфаниламидам.Механизм-нарушения процессов дыхания микробной клетки,воздействие на ДНК.
4.Производные нитромидазола(метронидазол)оказывают бактерицидное действие на грам- анаэробные бактерии содержащих белки-ферредоксины(Helicobacter),которые восстанавливают нитрогруппу препаратов,накапливаются в клетке,вызывая нарушения структуры ДНК.К ним чувствительны простейшие:трихомонады,лямбли,кишечные амёбы.
5.Хинолоны 1 поколения-нефторированные(невиграмон,палин)имеют узкий спектр действия-кишечное семейство.Используют для лечения инфекций мочевыводящих путей.Препараты 2 поколения(норфлоксацин,ципрофлоксацин) действуют на стафилококки и многие грам-,хламидии,риккетсии,микоплазмы.3,4 поколения(левофлоксацин,моксифлоксацин)-широкий спектр, наиболее активны в отношении хламидий,пневмококков.Используются в терапии инфекций верхних дыхательных путей,мочеполовойсистемы,ЖКТ,менингита и р.Механизм-ингибирование фермента ДНК-гиразы.
6.Диаминопиримидины-ингибируют синтез ДНК у бактерий и некоторых грибов.Препараттриметоприм применяется в комбинации с сульфаметаксозолом,окахывая бактерицидное действие.
7.Противосифилитические препараты:антибиоткикпинициллиновогоряда,макролиды.Помимо антибиотиков назначают препараты висмута-бийохинол,бисмоверол.Механизм-подавление ферментов.содержщихсульфагруппу.
8.Противотуберкулёзные препараты:комбинацииантибиотиков;изониазиды-ингибирует активность ферментов клеточной стенки. Быстро развивается резистентность;этамбутол-подавляет синтез РНК;натрияпарааминосалицилат-бактериостатическое действие.
9.Азолы-производные имидазола(клотримазол,миконазол и триазола(вориконазол)-изменяют структуру ЦПМ,противогрибковые препараты.
источник
Основываясь на принципах классификации антибиотиков, предложенных Шемякиным, Хохловым и др.(1961), и учитывая более поздние данные, с учетом физико-химического строения молекул, можно в свою очередь выделить следующие основные группы антибиотических веществ.
Антибиотики ациклического строения к которым относят такие антибиотики, как: аллицин, биоформин, азасерин, рафанин, нистатин, аскозин, кандимицин, трихомицин, фумагиллин и др. В зависимости от строения в эту группу входят следующие основные группы: жирные кислоты ,ацетилены, полиены, серо и азотсодержащие соединения.
Важное значение среди названных соединений имеют полиеновые антибиотики, характерной особенностью которых является наличие системы, содержащей от трех до восьми сопряженных двойных связей, типа:
Азот и серосодержащие соединения, которые проявляют антибактериальную и антифунгальную активность. Было доказано, что антимикробная активность изоцианатов уменьшается с уменьшением длины углеродной цепи и возрастает при введении в нее двойных связей. По антифунгальному действию изотиоцианаты располагаются в следующий ряд :
К числу полиеновых антибиотиков относится большое число (около 150) различного строения веществ. Многие антибиотики этой группы в составе молекул содержат аминосахар, например, микозамин и перозамин строения:
Отдельные вещества в структуре молекул содержат и вторую азотсодержащую часть, это такие, как: ароматические кетоны, например, п-аминоацетофенон, п-аминофенилацетон). Полиеновые антибиотики в зависимости от количества сопряженных двойных связей в структуре их молекул, в свою очередь подразделяются на шесть подгрупп:
-Триены (например, микотриен,триенин,триен);
-Тетраены (ареномицин,нистатин,фумагиллин и др.);
-Пентаены (эта группа включает более 40 антибиотиков, в том числе: ректилавендомицин, розеофунгин, ауренин,микомицин, флавомицин, фунгохромин и др.);
-Гексаены — малочисленная группа, включающая около восьми антибиотиков, например, эндомицин В (геликсин В),флавицид.
-Гептаены (группа,содержащая около 50 веществ, среди которых есть антибиотики, меющие практическое значение в медицине. К числу гептаенов относятся: кандидин, кандицидин, трихомицин, леворин, перимицин (фунгимицин), аминомицин и некоторые и другие.
Наиболее характерной особенностью биологического действия полиеновых антибиотиков является их высокая активность в отношении грибов и дрожжей и малая активность в отношении бактерий. Антибиотики-полиены приобрели большое значение для лечения тяжелых вторичных микозов, вызванных нарушением биологического равновесия в организме под влиянием других антибиотиков. Наиболее важным в практическом отношении антибиотиком полиеном является нистатин -С46Н77N19, а также трихомицин, кандицидин, кандидин , фумагиллин Последний, кроме того, обладает и сильным амебоцидным действием. Ниже приведены примеры строения двух из наиболее распространенных антибиотиков этой группы:
Антибиотики алициклического строения. Эта группа антибиотиков включает производные циклопентана (хаульмугровая кислота, саркомицин), циклогексана (актидион) и циклогептана (туевая кислота), строение которых можно выразить так:
хаульмугровая к-та саркомицин туевая к-та актидион
Тетрациклины. К этой группе относятся соединения, близкие по своему строению. Эти антибиотики имеют общее нафтаценовое ядро и отличаются только строением заместителей. К этой группе антибиотиков относятся тетрациклин, хлортетрациклин или уреомицин, окситетрациклин и некоторые другие, которые обладают высокой антимикробной активностью и широким спектром действия. Устойчивость микроорганизмов к тетрациклинам развивается медленно, что отличает его от других антибиотиков. Строение молекулы тетрациклина следующее:
Ароматические и небензоидные антибиотики. Антибиотики, относящиеся к этой группе могут быть как производными бензола (например, микофеноловая, гладиоловая, галловая кислоты, сульфаниламид , хлорамфеникол и другие антибиотики), так и небензоидными неароматическими соединениями. Для примера, ниже, представлено строение двух из них:
триоксибензойная (галловая) к-та хлорамфеникол (левомицетин)
Сульфаниламид, называемый в официальной медицине белым стрептоцидом, важное и малотоксичное (в отличие от красного стрептоцида) бактериостатическое вещество, эффективно излечивающее целый ряд стрептококковых заболеваний, которое имеет нижеследующее структурное строение:
К этой же группе относится и вышеприведенный антибиотик — левомицетин (хлорамфеникол). Это один из активнейших антибиотиков, применяемых при лечении пищевых инфектий и диарей. Хлорамфе-никол обладает не только широким спектром антибиотического действия и высокой активностью , но и малотоксичен для теплокровных и человека. В настоящее время этот антибиотик является одним из важнейших лекарственных средств применяемых в медицинской практике. К нему чувствительны большинство грамположительных и грамотрицательных бактерий, некоторые вирусы, а также некоторые болезнетворные грибы и спирохеты. Получается 6-ти стадийным химическим синтезом из п-нитроацетофенона. Он образует ряд изомеров и функциональных производных , также обладающих широким спектром антибиотического действия.
Небензоидные неароматические атибиотики (трополоны) группа производных цикло- 2,4,6-гектатетраен-1-он-2-ола, обладающих антибактериальным и противогрибковым действием. Известны следующие А -трополоны – туяплицин ( и ), нуткатин, стипитатовая и пуберулоновая кислоты. Химические свойства их определяются в основном характерными особенностями трополонового цикла. Они способны взаимодействовать с различными электрофильными реагентами и вступают в реакции нитрования, бромирования, хлорирования, сульфирования. Антибиотики-трополоны проявляют выраженное антифунгальное (фунгицидное) действие. К ним относится группа туяплицинов, к которым (особенно к –изомеру) очень чувствительны грибки, вызывающие активное гниение древесины. Это, по-видимому, объясняет высокую устойчивость к гниению деревьев, образующих туяплицины (например, туя, кипарис). Активно используются туяплицины и при лечении туберкулеза. Они имеют строение:
Антибиотики-хиноны. Антибиотические вещества, относящиеся к этой группе соединений, как правило, не имеют практического значения для официальной медицины, однако играют существенную роль в регулировании жизнедеятельности отдельных фидов внутри ценозов. Вещества этой группы включают бензохиноны (например, рапанон, фумигатин и др.), нафтохиноны (например, плюмбагин, яваницин и др.) и антрахиноны (например, эндокрицин и др.). О их строении можно составить суждение из нижеприведенных структурных формул.
Посколько антибиотическая активность характерна для весьма широкого круга хинонов, то вполне вероятно, что среди многих природных хинонов ( сейчас их известно около 180 ) еще будут обнаружены вещества, способных подавлять жизнедеятельность различных микроорганизмов. К антибиотикам – хинонам относятся и целикомицины; в молекулах последних одновременно содержатся и хромофорная углеродная, и пептидная группировки. Антибиотики, относящиеся к целикомицинам, представляют собой синие пигменты актиномицетов.
рапанон фумигатин плюмбагин
Некоторые ученые считают, что целикомицины принадлежат к новому классу антибиотических веществ — гликохромпептидам. К этой группе антибиотических веществ относят такие, как : целикомицины А, В и С, литмоцидин А, литмофугин и недавно открытый пигмент 1321-В.
Антибиотики — кислородсодержащие гетероциклические соединения. В эту группу входит большое число антибиотиков,в том числе уже упомянутые выше антимицины, пеницилловая кислота, гризеофульвин, а также усниновая кислота, цитринин, новобиоцин, трихотецин и многие другие соединения. Среди них наиболее практический интерес представляет новобиоцин, гизеофульвин и трихотецин. Кислородсодержащие гетероциклические антибиотики можно разделить на три основные группы.
Антибиотики с одним пятичленным фурановым О-гетероциклом. Например , к ним относят производное фурана — карлина-оксид, который содержится в эфирном масле корней растения Galina ocaulis. Сюда же можно отнести и пеницилловую кислоту, которая образуется грибами рода Penicillium puberulum и гризеофульвин, образуемый Penic. Griseofuoum и некоторыми другими видами из рода Penicillium. Они используются растениями для защиты от других вредных (патогенных) грибов. Строение некоторых из перечисленных антибиотиков дано ниже:
карлина-оксид пеницилловая кислота
Следующая группа — антибиотики с одним шестичленным О-гетероциклом. Например, койевая кислота , которая является одним из природных соединений; она выделена из мицелия гриба Asperqillius еще в 1907 году. Сюда же относят и такие известные антибиотики, как цитринин и еще более сложно устроенный новобиоцин, имеющие строение:
Антибиотики с несколькими О-гетероциклами. К этой группе антибиотиков относят вещества, содержащие конден-сированные четырех-, пяти- и шестичленные циклы одновременно. Примером последних является трихотецин, полученный из гриба Tricholecium ioseum, который имеет строение:
Антибиотики-олигомицины. К этой группе антибиотиков относятся сложного циклического строения соединения, содержащие в молекуле одну или несколько сопряженных диеновых связей. В качестве примеров можно назвать нижеследующие антибиотики: олигомицины А, В и С, ботримицин, хондамицин, финомицин. Основной фрагмент, иллюстрирующий сложное сруктурное строение молекулы олигомицина В можно выразить так:
олигомицин В (частичная структура)
Олигомицины в результате ингибирования процессов окислительного фосфорилирования, способны подавлять развитие грибов, в том числе и фитопатогенных. Вот почему их относят к фунгицидам.
Антибиотики — макролиды. Характерная особенность антибиотиков этой группы — присутствие в их молекуле макроциклического лактонного кольца, связанного с одним или несколькими углеводными остатками (обычно аминосахарами). Все они отличаются значительной бактериостатической активностью по отношению к большинству грамположительных бактерий. У многих микроорганизмов наблюдается перекрестная устойчивость к различным макролидам, что, по-видимому , связано с одинаковым механизмом их действия. С другой стороны, некоторые болезнетворные бактерии ( в особенности стафилококки и стрептококки), ставшие устойчивыми к пеницилину, стрептомицину, тетрациклину и др., как правило, все еще остаются чувствительными к воздействию макролидов. Это обстоятельство приобретает большое значение, так как по мере внедрения антибиотиков в медицину появляется все больше штаммов болезнетворных микробов нечувствительных к антибиотикам массового применения. К антибиотикам – макролидам относятся, например, метимицин, эритромицин, магнамицин, эритромицин, и др. Наиболее распространенным антибиотиком-макролидом является эритромицин, характеризующийся низкой токсичностью и большой антимикробной активностью. Строение метимицина приведено ниже:
Аминогликозидные антибиотики. К этой группе антибиотических веществ относятся соединения, содержащие в молекуле гликозидные связи. К ним принадлежат стрептомицины, гигромицин, неомицин, каномицины, гентамицины и др. Многие из этих антибиотиков нашли широкое применение при лечении ряда ранее неизлечимых заболеваний. Первый и наиболее важный представитель этой группы антибиотиков — стрептомицин был описан З.Ваксманом еще в 1944г. Эти антибиотики устойчивы к воздействию кислой среды и к высокой температуре. В течение длительного времени они могут храниться без разложения и потери активности при 50 о С. Строение стрептомицина можно представить в таком виде:
Азотсодержащие гетероциклические соединения. В эту группу входит большое число антибиотиков, молекулы которых содержат самые различные, часто очень сложные конденсированные циклические системы. Последние могут быть бензоидными, гетероциклическими. Антибиотики этой группы в составе молекул часто содержат и остатки сахара рибозы. Они образуются бактериями (продигиозин), практиномицетами (азомицин, нокардим), актиномицетами (пуромицин, циклосерин) и плесневыми грибами (пенициллины). Суждение о их пространственном строении можно составить из нескольких нижеприведенных примеров.
Антибиотик этой же группы продигиозин образуется грам-отрицательными бактериями Bact. Prodigisum и некоторыми актиномицетами и имеет следующее строение:
Невозможно не упомянуть и введенный в медицинскую практику в 40-х годах антибиотик пенициллин, который по существу, произвел переворот в методах лечения целого ряда тяжелых, часто неизлечимых заболеваний, которые вызываются стрепто-, пневмо-, менинго- и стафиллококками. В силу своей значимости пенициллин и его производные были подвергнуты тщательному, всестороннему изучению, которое продолжается и в настоящее время. Было установлено, что молдекула пенициллина состоит из двух аннелированных азот- и серосодержащих гетероциклов — четырех и пятичленного. Строение молекулы пенициллина можно выразить сле-
дующей структурной формулой:
Ряд новых пенициллинов был получен путем химических изменений (модификации) ацильного остатка р-оксибензолпенициллина, но они не имели такого большого применения как родоначальное соединение, так как менее активны. Резистентность (привыкание и приобретенная устойчивость) многих болезнетворных микробов и массовая аллергизация населения вынуждают ученых и медиков интенсивно работать в направлении создания новых, модифицированных структур пенициллинов.
Антибиотики – полипептиды группа полипептидов и некоторых белков, обладающих антибактериальной активностью.; состоит из аминокислот и их производных; некоторые содержат элементы структуры, относящиеся к гетероциклам, карбоновым кислотам, углеводам, аминоспиртам и др. Характерной особенностью этих антибиотиков является то, что они построены из остатков -окси- и -аминокислот, соединенных между собой сложноэфирными и амидными (пептидными) связями, типа:
—<-О-СН(R )-CO-NHCH(R )-CO-O-CH(R )-CO-NH->n-.Такой тип строения в некоторых случаях обеспечивает поразительную устойчивость этих лекарственных веществ к ферментативному и кислотному гидролизу (например, грамицидин С ).
Низшие пептиды, вплоть до пентапептидов, обладают более низкой антибактериальной активностью. И наоборот — увеличение длины полипептидной цепочки до декапептида ведет к значительному увеличению биоцидной активности. Переход от линейной к циклопептидной структуре молекулы антибиотика-полипептида также сопровождается увеличением антибактериальной активности.
Антибиотики-полипептиды в свою очередь могут быть классифицированы на группы:
— антибиотики, производные аминокислот, например, аза- или циклосерин;
— антибиотики, собственно полипептиды, молекула которых состоит только из аминокислот – семейства грамицидинов, тироцидинов, бацитрациов и др.;
— антибиотики-олипептиды смешанного состава, в молекуле которых наряду с пептидной частью содержатся простетические группировки — полимексины, актиномицины, альбомицины, пуромицин и др.;
— антибиотики–белки, к которым относят ряд полипептидов и белков бактериального и животного происхождения, такие как: актиномицитин, парамицин, стрептостазин, лизоцим и др.;
— антибиотики дипсипептиды, к которым относится группа эннантинов А,В,С. Пространственное строение, например, эннантина В можно выразить следующим образом:
Все антибиотики этой группы содержат остаток только одной оксикислоты: D––оксиизовалериановой кислоты строения: СН32СНСН(ОН)СООН. Остатки же аминокислот могут быть самые разные.
Актиномицины. К группе актиномицинов принадлежат антибио-тики, в состав которых входят одинаковая для всех этих веществ фенок-сазиновая хромофорная группа и различные пептидные алифатические цепи, примером может служить актиномицин G, строения:
Стрептотрицины. В эту группу входят около около 70 препаратов, продуцируемых при помощи различных видов актиномицетов. Они обладают весьма высокой биоактивностью и широким спектром антибиотического действия. Для этих антибиотиков характерно редкое сочетание двух типов биоактивности одновременно: антифунгальной (фунгицидной) и выраженного противовирусного действия. Примером таковых может быть известный и применяемый в официальной медицене антибиотик геомицин, который имеет строение:
Металлсодержащие соединения-антибиотики. Среди металлсодержащих антибиотиков имеются железо- и медьсодержащие соединения. К первым относятся гризеин и близкий к нему альбомицин. Эти антибиотики содержат трехвалентное железо, связанное с органической частью молекулы вещества. Гризеин это красного цвета аморфный порошок состава C40H61N10O20SFe. В гризеине и альбомицине атом железа, по-видимому, связан с олигопептидом. При обработке названных антибиотиков HCl и HBr железо можно легко удалить из состава молекулы, но биологическая активность вещества при этом уменьшается в 12-14 раз. Активность восстанавливается при возвращении иона Fe 3+ в состав молекулы антибиотика.
В качестве примера медьсодержащего антибиотика можно назвать флеомицин. Интересно, что в этом случае медь можно удалить из молекулы антибиотика при обработке вещества 8-оксихинолином, но без потери биологической активности. Предполагается, что молекула основания этого антибиотика, продуцируемого актиномицетом, состоит из углеводной и пептидной частей.
Рассмотренный вариант классификации антибиотиков имеет важное значение для специалистов, изучающих строение и физико-химические свойства антибиотических веществ.
Гипотезы относительно функций антибиотиков, которые они выполняют в микроорганизмах-продуцентах.
Основные гипотезы выдвинутые для объяснения эволюционного значения антибиотиков, можно разделить на 3 группы:
— удаление ненужных продуктов обмена;
-конкуренция между организмами;
Согласно первой гипотезе, вторичные метаболиты – легко выводимые вещества, образующиеся путем ферментативного превращения из первичных метаболитов.
По второй гипотезе в почве, откуда выделено большинство продуцентов антибиотиков, жизнь носит конкурентный характер. Почвообитающие микроорганизмы безусловно конкурируют за использование источников углерода, азота, фосфора и др. элементов питания. Последние образуются при разложении растительного и животного материала который необходим для их роста и жизнедеятельности. Конкурентоспособность может обеспечиваться благодаря метаболической специализации или же за счет подавления роста других организмов путем биосинтеза и выделения веществ – антибиотиков.
Третья гипотеза предполагает, что антибиотики целенаправленно продуцируются в данном живом организме для того, чтобы изменять метаболизм хозяина – продуцента в нужном для их выживания направлении.
Согласно этим теориям мы видим, что направленность и механизмы действия антибиотиков внутри и вне организма живого — весьма многогранны.
источник