Клеточное дыхание — это окисление органических веществ в клетке, в результате которого синтезируются молекулы АТФ. Исходным сырьем (субстратом) обычно служат углеводы, реже жиры и еще реже белки. Наибольшее количество молекул АТФ дает окисление кислородом, меньшее – окисление другими веществами и переносом электронов.
Углеводы, или полисахариды, перед использованием в качестве субстрата клеточного дыхания распадаются до моносахаридов. Так у растений крахмал, а у животных гликоген гидролизуются до глюкозы.
Глюкоза является основным источником энергии почти для всех клеток живых организмов.
Первый этап окисления глюкозы — гликолиз. Он не требует кислорода и характерен как при анаэробном, так и аэробном дыхании.
Клеточное дыхание включает в себя множество окислительно-восстановительных реакций, в которых происходит перемещение водорода и электронов от одних соединений (или атомов) к другим. При потери электрона каким-либо атомом происходит его окисление; при присоединении электрона — восстановление. Окисляемое вещество — это донор, а восстанавливаемое — акцептор водорода и электронов. Окислительно-восстановительные реакции, протекающие в живых организмах носят название биологического окисления, или клеточного дыхания.
Обычно при окислительных реакциях происходит выделение энергии. Причина этого кроется в физических законах. Электроны в окисляемых органических молекулах находятся на более высоком энергетическом уровне, чем в продуктах реакции. Электроны, переходя с более высокого на более низкий энергетический уровень, высвобождают энергию. Клетка умеет фиксировать ее в связях молекул АТФ — универсальном «топливе» живого.
Наиболее распространенным в природе конечным акцептором электронов является кислород, который восстанавливается. При аэробном дыхании в результате полного окисления органических веществ образуются углекислый газ и вода.
Биологическое окисление протекает по-этапно, в нем участвуют множество ферментов и соединения, переносящие электроны. При ступенчатом окислении электроны перемещаются по цепи переносчиков. На определенных этапах цепи происходит выделение порции энергии, достаточной для синтеза АТФ из АДФ и фосфорной кислоты.
Биологическое окисление весьма эффективно по-сравнению с различными двигателями. Около половины выделяющейся энергии в конечном итоге фиксируется в макроэргических связях АТФ. Другая часть энергии рассеивается в виде тепла. Поскольку процесс окисления ступенчатый, то тепловая энергия выделяется понемногу и не повреждает клетки. В то же время она служит для поддержания постоянной температуры тела.
Различные этапы клеточного дыхания у аэробных эукариот происходят
в матриксе митохондрий – цикл Кребса, или цикл трикарбоновых кислот,
на внутренней мембране митохондрий – окислительное фосфорилирование, или дыхательная цепь.
На каждом из этих этапов из АДФ синтезируется АТФ, больше всего на последнем. Кислород в качестве окислителя используется только на этапе окислительного фосфорилирования.
Суммарные реакции аэробного дыхания выглядит следующим образом.
Дыхательная цепь: 12H2 + 6O2 → 12H2O + 34АТФ
Таким образом биологическое окисление одной молекулы глюкозы дает 38 молекул АТФ. На самом деле нередко бывает меньше.
Большинство анаэробов — это микроорганизмы. Однако к организмам, использующим анаэробное дыхание, относятся также дрожжи, ряд червей-паразитов. Способностью к анаэробному дыханию также обладают определенные ткани. Например, мышечные клетки, которые периодически могут испытывать недостаток кислорода.
При анаэробном дыхании в окислительных реакциях акцептор водорода НАД не передает водород в конечном итоге на кислород, которого в данном случае нет.
В качестве акцептора водорода может быть использована пировиноградная кислота, образующаяся при гликолизе.
У дрожжей пируват сбраживается до этанола (спиртовое брожение). При этом в процессе реакций образуется также углекислый газ и используется НАД:
CH3COCOOH (пируват) → CH3CHO (ацетальдегид) + CO2
Молочнокислое брожение происходит в животных клетках, испытывающих временный недостаток кислорода, и у ряда бактерий:
CH3COCOOH + НАД · H2 → CH3CHOHCOOH (молочная кислота) + НАД
Оба брожения не дают выхода АТФ. Энергию в данном случае дает только гликолиз, и составляет она всего две молекулы АТФ. Значительная часть энергии глюкозы так и не извлекается. Поэтому анаэробное дыхание считается малоэффективным.
источник
Клеточное или тканевое дыхание — совокупность биохимических реакций, протекающих в клетках живых организмов, в ходе которых происходит окисление углеводов, липидов и аминокислот до углекислого газа и воды.
Итак, клеточное дыхание происходит в клетке.
Но где именно? Какая органелла осуществляет этот процесс?
Основной этап клеточного дыхания осуществляется в митохондриях. Как известно, основной продукт работы митохондрии — молекулы АТФ — синоним понятия «энергия» в биологии. Действительно, основным продуктом этого процесса является энергия, молекулы АТФ.
АТФ — это молекула — синоним энергии в биологии. Расшифровывется как Аденозинтрифосфат или Аденозинтрифосфорная кислота. Как видно из рисунка формулы, в составе молекулы есть:
- три связи с остатками фосфорной кислоты, при разрыве которых выделяется большое количество энергии,
- углевод рибоза ( пятиатомый сахар) и
- азотистое основание
1 Этап клеточного дыхания — подготовительный
Каким образом вещества попадают в клетки? В процессе пищеварения организма. Суть процесса пищеварения — расщепление полимеров, поступающих в организм с пищей, до мономеров:
- белки расщепляются до аминокислот;
- углеводы — до глюкозы;
- жиры расщепляются до глицерина и жирных кислот.
Т.е. в клетку поступают уже мономеры.
Дальше мы рассмотрим путь превращения именно глюкозы .
2 Этап клеточного пищеварения
Гликолиз — ферментативный процесс последовательного расщепления глюкозы в клетках, сопровождающийся синтезом АТФ.
Гликолиз при аэробных условиях ведёт к образованию пировиноградной кислоты (ПВК) (пирувата),
гликолиз в анаэробных условиях (бескислородных или при недостатке кислорода) ведёт к образованию молочной кислоты (лактата).
Процесс идет с участием молекул фосфорной кислоты, поэтому называется окислительное фосфорилирование
Гликолиз является основным путём катаболизма глюкозы в организме животных.
Превращения происходят в цитоплазме клетки, т.е. процесс будет однозначно анаэробным: молекула глюкозы расщепится до ПВК — пировиноградной кислоты с выделением 2 молекул АТФ:
Дальше образовавшаяся пировиноградная кислота поступает в митохондрии, где происходит ее дальнейшее окисление
3 Этап клеточного пищеварения (кислородный)
Поступая в митохондрию, происходит окисление: ПВК под действием кислорода расщепляется до углекислого газа (суммарное уравнение):
Вначале отщепляется один углеродный атом пировиноградной кислоты. При этом образуется углекислый газ, энергия (она запасается в одной молекуле НАДФ) и двухуглеродная молекула — ацетильная группа. Затем реакционная цепь поступает в метаболический координационный центр клетки — цикл Кребса.
Цикл Кребса
Цикл Кребса — это реакции, которые начинаются, когда определенная входящая молекула соединяется с другой молекулой, выполняющей функцию «помощника». Такая комбинация инициирует серию других химических реакций, в которых образуются молекулы-продукты и в конце воссоздается молекула-помощник, которая может начать весь процесс вновь.
Для переработки энергии, запасенной в одной молекуле глюкозы, цикл Кребса нужно пройти дважды
Процесс многостадийный, и в нем, помимо различных кислот с интересными названиями участвуют коферменты (КоА).
Что такое коферменты?
- это органические вещества небольшого размера
- они способны соединяться с белками ( или прямо с ферментами, у которых, кстати, белковая природа), образуя активное вещество, косплекс, которое будет являться чем-то вроде катализатора.
Приставка «ко-» — это как «со-» — сопродюсер, соотечественник и т.п. Т.е. «вместе, с «
Гликолиз — катаболический путь исключительной важности.
Он обеспечивает энергией клеточные реакции, в том числе и синтез белка.
Промежуточные продукты гликолиза используются при синтезе жиров.
Пируват также может быть использован для синтеза других соединений. Благодаря гликолизу производительность митохондрий и доступность кислорода не ограничивают мощность мышц при кратковременных предельных нагрузках.
источник
Мы все нуждаемся в энергии, чтобы нормально функционировать, и мы получаем эту энергию из продуктов, которые употребляем в пищу. Наиболее эффективным способом накопления энергии клетками, хранящейся в пище является клеточное дыхание, катаболический процесс для производства аденозинтрифосфата (АТФ). АТФ — молекула с высоким содержанием энергии, используемая рабочими клетками организма. Клеточное дыхание протекает как в эукариотических, так и прокариотических клетках. Существуют три основные этапа клеточного дыхания: гликолиз, цикл лимонной кислоты и окислительное фосфорилирование.
Гликолиз буквально означает «расщепление сахара». Процесс гликолиза происходит в цитоплазме клетки. Глюкоза и кислород подаются в клетки кровотоком. В результате гликолиза образуются две молекулы АТФ, две молекулы пировиноградной кислоты и две «высокоэнергетичные» молекулы НАДН. Гликолиз может происходить с кислородом или без него. В присутствии кислорода гликолиз является первой стадией аэробного клеточного дыхания. Без кислорода гликолиз позволяет клеткам производить небольшое количество АТФ. Этот процесс называется анаэробным дыханием или ферментацией. Ферментация также производит молочную кислоту, которая может накапливаться в мышечной ткани, вызывая болезненность и жжение.
Цикл лимонной кислоты, также известный как цикл трикарбоновой кислоты или цикл Кребса, начинается после того, как молекулы из процесса гликолиза, преобразуются в несколько другое соединение — ацетил-КоА.
Через ряд промежуточных этапов наряду с двумя молекулами АТФ образуются несколько соединений, способных хранить «высокоэнергетические» электроны. Соединения, известные как никотинамидадениндинуклеотид (НАД) и флавинадениндинуклеотид (ФАД), снижаются в процессе. Эти приведенные формы переносят «высокоэнергетические» электроны на следующий этап.
Цикл лимонной кислоты происходит только тогда, когда есть кислород, но он не использует кислород напрямую. Все реакции этого цикла протекают в клеточных митохондриях.
Электронный транспорт нуждается в непосредственном наличии кислорода. Электронно-транспортная цепь представляет собой ряд электронных носителей в мембране митохондрий эукариотических клеток. Через серию реакций электроны с высокой энергией передаются в кислород. При этом образуется градиент, и в конечном итоге путем окислительного фосфорилирования получается АТФ. Фермент АТФ-синтаза использует энергию, создаваемую электронно-транспортной цепью для фосфорилирования АДФ в АТФ.
Таким образом, прокариотические клетки могут давать 38 АТФ-молекул, тогда как эукариотические клетки дают максимум 36. В эукариотических клетках молекулы НАДН, полученные в гликолизе, проходят через митохондриальную мембрану, которая «стоит» двух молекул АТФ.
источник
Клеткам живых организмов постоянно требуется энергия для осуществления различных процессов жизнедеятельности. Универсальным поставщиком этой энергии служит АТФ, которая образуется в реакциях энергетического обмена. У большинства организмов АТФ синтезируется главным образом в процессе клеточного дыхания. Клеточное дыхание — сложный процесс, в ходе которого происходит расщепление органических веществ (в конечном итоге — до простейших неорганических соединений), а высвобождающаяся энергия их химических связей запасается и затем используется клеткой (рис. 60).
Большинство живых организмов (все растения, большинство животных, грибов и протистов, многие бактерии) использует в процессе клеточного дыхания кислород. Такие организмы называются аэробами (от греч. аэр — воздух, биос — жизнь), а их тип дыхания — аэробным дыханием. Рассмотрим, как протекает процесс клеточного дыхания в аэробных условиях (т. е. в условиях свободного доступа кислорода).
Этапы клеточного дыхания. Подготовительный этап заключается в расщеплении крупных органических молекул до более простых соединений. Эти процессы происходят в пищеварительной системе (у животных) и цитоплазме клеток без использования кислорода. Под действием пищеварительных ферментов полисахариды расщепляются до моносахаридов, жиры — до глицерина и высших карбоновых кислот, белки — до аминокислот, нуклеиновые кислоты — до нуклеотидов. При этом выделяется мало энергии, она не запасается в виде АТФ, а рассеивается в виде тепла. Более того, для протекания реакций расщепления требуются определенные затраты энергии.
Вещества, образовавшиеся в результате подготовительного этапа, могут использоваться клеткой как в реакциях пластического обмена, так и для дальнейшего расщепления с целью получения энергии.
Второй этап энергетического обмена называется бескислородным или анаэробным. Он заключается в ферментативном расщеплении органических веществ, полученных в ходе подготовительного этапа. Кислород в реакциях этого этапа не участвует, более того, анаэробный этап может протекать в условиях полного отсутствия кислорода. Основным источником энергии в клетке является глюкоза, поэтому второй этап мы рассмотрим именно на примере бескислородного расщепления глюкозы — гликолиза.
Гликолиз — многоступенчатый процесс бескислородного расщепления глюкозы (С6Н1206) до пировиноградной кислоты (С3Н403). Реакции гликолиза катализируются специальными ферментами и протекают в цитоплазме клеток.
В ходе гликолиза каждая молекула глюкозы расщепляется до двух молекул пировиноградной кислоты (ПВК)- При этом высвобождается энергия, часть которой рассеивается в виде тепла, а оставшаяся используется для синтеза 2 молекул АТФ. Промежуточные продукты гликолиза подвергаются окислению — от них отщепляются атомы водорода, которые используются для восстановления НДД + .
НАД — никотинамидадениндинуклеотид (полное название приводится не для запоминания) — вещество, которое выполняет в клетке функцию переносчика атомов водорода. НАД, присоединивший два атома водорода, называется восстановленным (записывается как НАД’Н+Н + ). Восстановленный НАД может отдавать атомы водорода другим веществам и переходить в окисленную форму (НАД + ).
Таким образом, процесс гликолиза можно выразить следующим суммарным уравнением (для упрощения во всех уравнениях реакций энергетического обмена не указаны молекулы воды, образующиеся при синтезе АТФ):
В результате гликолиза высвобождается лишь около 5 % энергии, заключенной в химических связях молекул глюкозы. Значительная часть энергии содержится в продукте гликолиза — ПВК- Поэтому при аэробном дыхании после гликолиза следует завершающий этап — кислородный, или аэробный.
Пировиноградная кислота, образовавшаяся в результате гликолиза, поступает в матрикс митохондрий, где полностью расщепляется и окисляется до конечных продуктов — С02 и Н20. Восстановленный НАД, образовавшийся при гликолизе, также поступает в митохондрии, где подвергается окислению. В ходе аэробного этапа дыхания потребляется кислород и синтезируются 36 молекул АТФ (в расчете на 2 молекулы ПВК)- С02 выделяется из митохондрий в гиалоплазму клетки, а затем в окружающую среду. Итак, суммарное уравнение кислородного этапа дыхания можно представить следующим образом:
В матриксе митохондрий ПВК подвергается сложному ферментативному расщеплению, продуктами которого являются углекислый газ и атомы водорода. Последние доставляются переносчиками НАД и ФАД (флавинадениндинуклеотид) на внутреннюю мембрану митохондрии (рис. 61).
Во внутренней мембране митохондрий содержится фермент АТФ — с и н те таз а, а также белковые комплексы, образующие электрон-транспортную цепь (ЭТЦ). В результате функционирования компонентов ЭТЦ атомы водорода, полученные от НАД и ФАД, разделяются на протоны (Н + ) и электроны. Протоны переносятся через внутреннюю мембрану митохондрий и накапливаются в межмембранном пространстве. Электроны с помощью ЭТЦ доставляются в матрикс на конечный акцептор — кислород (0″). В результате образуются анионы О 2- .
Накопление протонов в межмембранном пространстве ведет к возникновению электрохимического потенциала на внутренней мембране митохондрий. При достижении определенной концентрации протоны начинают перемещаться в матрикс, проходя через специальные каналы фермента АТФ-синтетазы. Электрохимическая энергия используется для синтеза большого количества молекул АТФ. В матриксе протоны соединяются с анионами кислорода и образуется вода: 2Н+ + О 2- — НоО.
Следовательно, при полном расщеплении одной молекулы глюкозы клетка может синтезировать 38 молекул АТФ (2 молекулы в процессе гликолиза и 36 молекул в ходе кислородного этапа). Общее уравнение аэробного дыхания можно записать следующим образом:
Основным источником энергии для клеток являются углеводы, но в процессах энергетического обмена также могут использоваться продукты расщепления жиров и белков.
1. Клеточное дыхание относится к процессам ассимиляции или диссимиляции? Почему?
2. Что представляет собой процесс клеточного дыхания? Откуда берется энергия для синтеза АТФ в процессе клеточного дыхания?
3. Перечислите этапы клеточного дыхания. Какие из них сопровождаются синтезом АТФ? Какое количество АТФ (в расчете на 1 моль глюкозы) может образоваться в ходе каждого этапа?
4. Где осуществляется гликолиз? Какие вещества необходимы для протекания гликолиза? Какие конечные продукты при этом образуются?
5. В каких органоидах происходит кислородный этап клеточного дыхания? Какие вещества вступают в этот этап? Какие продукты образуются?
6. В подготовительный этап клеточного дыхания вступает 81 г гликогена. Какое максимальное количество АТФ (моль) может синтезироваться в результате последующего гликолиза? В ходе аэробного этапа дыхания?
7. Почему расщепление органических соединений при участии кислорода энергетически более эффективно, чем при его отсутствии?
8. Длина митохондрий колеблется от 1 до 60 мкм, а ширина — в пределах 0,25—1 мкм. Почему при столь значительных различиях в длине митохондрий их ширина относительно невелика и сравнительно постоянна?
Глава 1. Химические компоненты живых организмов
Глава 2. Клетка — структурная и функциональная единица живых организмов
Глава 3. Обмен веществ и преобразование энергии в организме
Глава 4. Структурная организация и регуляция функций в живых организмах
Глава 5. Размножение и индивидуальное развитие организмов
Глава 6. Наследственность и изменчивость организмов
источник
- В каких структурах растительной клетки накапливается крахмал:
2. Какие структуры участвуют в клеточном дыхании:
А. совокупность нуклеотидов
б. генетический материал бактерий
А. хранение и передача наследственной информации
б. участие в делении клеток
С. участие в биосинтезе белка
5. Какова функция нуклеиновых кислот в клетке:
А. хранение и передача наследственной информации
б. участие в делении клеток
С. участие в биосинтезе белка
6. Роль липидного слоя в функционировании биологических мембран:
А. избирательная проницаемость.
Д. проницаемость только для крупных молекул.
Е. проницаемость только для воды
7. Кто впервые ввел термин «фагоцитоза»:
8.В каких органоидах синтезируются белки:
9. С какой из структур ядра связано образование всех видов РНК:
10. С появлением какой структуры ядро обособилось от цитоплазмы:
11. Какая ядерная структура несет наследственные свойства:
12. Почему митохондрии называют энергетическими станциями клеток:
А. осуществляют синтез белка.
13. Органоид, имеющий дойную мембрану:
14. Какие структурные элементы характерны для всех клеток:
15. Каково строение липидного слоя мембраны клетки:
16. Полужидкое вещество, заполняющее всю клетку, в котором расположены органоиды и ядро:
17. Как называется тонкий внешний покров клетки и некоторых органоидов, состоящий из молекул липидов и белков:
18. Органоид, связывающий клетку в единое целое, осуществляющий транспорт веществ, участвующий в синтезе белков:
С. эндоплазматическая сеть.
19. Как называются внутренние складки митохондрий:
20. Что расположено на наружной поверхности мембран ЭПС:
21. Какие органоиды имеют одномембранное строение:
22. Органоиды движения простейших организмов:
23. Какой органоид есть только в растительной клетке:
24. Первичные организмы-прокариоты:
25. Придает привлекательный вид для насекомых лепесткам цветов:
26. Выберите характеристику эукариотической клетки:
Б. отсутствует наследственный материал .
С. носителем наследственности служит молекула РНК.
Д. все эукариоты многоклеточны.
Е. одноклеточные организмы.
27. Пиноцитоз является функцией:
28. К эукариотам относятся:
29. Какой компонент клетки участвует в процессе фотосинтеза:
30. Неизлечимая болезнь, вызываемая вирусом и передающаяся от человека к человеку половым путем:
1. Кто впервые ввел термин «фагоцитоза»:
2. Какой органоид есть только в растительной клетке:
А. совокупность нуклеотидов
б. генетический материал бактерий
4. Роль липидного слоя в функционировании биологических мембран:
А. избирательная проницаемость.
Д. проницаемость только для крупных молекул.
Е. проницаемость только для воды
5. В каких структурах растительной клетки накапливается крахмал:
6. Пиноцитоз является функцией:
7. Что расположено на наружной поверхности мембран ЭПС:
8. Неизлечимая болезнь, вызываемая вирусом и передающаяся от человека к человеку половым путем:
9. Какова функция нуклеиновых кислот в клетке:
А. хранение и передача наследственной информации
б. участие в делении клеток
С. участие в биосинтезе белка
10. Какие структуры участвуют в клеточном дыхании:
А. хранение и передача наследственной информации
б. участие в делении клеток
С. участие в биосинтезе белка
12. С появлением какой структуры ядро обособилось от цитоплазмы:
13. Органоид, связывающий клетку в единое целое, осуществляющий транспорт веществ, участвующий в синтезе белков:
С. эндоплазматическая сеть.
14.В каких органоидах синтезируются белки:
15. С какой из структур ядра связано образование всех видов РНК:
16. Какой компонент клетки участвует в процессе фотосинтеза:
17. Первичные организмы-прокариоты:
18. Как называются внутренние складки митохондрий:
19. Как называется тонкий внешний покров клетки и некоторых органоидов, состоящий из молекул липидов и белков:
20. Органоиды движения простейших организмов:
21. Выберите характеристику эукариотической клетки:
Б. отсутствует наследственный материал .
С. носителем наследственности служит молекула РНК.
Д. все эукариоты многоклеточны.
Е. одноклеточные организмы.
22. Придает привлекательный вид для насекомых лепесткам цветов:
23. Какая ядерная структура несет наследственные свойства:
24. Какие структурные элементы характерны для всех клеток:
25. Какие органоиды имеют одномембранное строение:
26. Почему митохондрии называют энергетическими станциями клеток:
А. осуществляют синтез белка.
27. Органоид, имеющий двойную мембрану:
28. Полужидкое вещество, заполняющее всю клетку, в котором расположены органоиды и ядро:
29. Каково строение липидного слоя мембраны клетки:
источник
0. Подготовительная стадия
В пищеварительной системе сложные органические вещества распадаются до более простых (белки до аминокислот, крахмал до глюкозы, жиры до глицерина и жирных кислот и т.п.). При этом выделяется энергия, которая рассеивается в форме тепла.
1. Гликолиз
Происходит в цитоплазме, без участия кислорода (анаэробно). Глюкоза окисляется до двух молекул пировиноградной кислоты, при этом образуется энергия в виде 2 АТФ и богатых энергией электронов на переносчиках.
2. Окисление ПВК в митохондриях
Происходит в митохондриях. ПВК окисляется кислородом до углекислого газа, при этом образуются богатые энергией электроны. Они восстанавливают кислород, при этом образуется вода и энергия на 36 АТФ.
Брожение состоит из гликолиза (2 АТФ) и превращения ПВК в молочную кислоту или спирт + углекислый газ (0 АТФ). Итого 2 АТФ.
Кислородное дыхание состоит из гликолиза (2 АТФ) и окисления ПВК в митохондриях (36 АТФ). Итого 38 АТФ.
Покрыты двумя мембранами. Наружная мембрана гладкая, внутренняя имеет выросты внутрь – кристы, они увеличивают площадь внутренней мембраны, чтобы расположить на ней как можно больше ферментов клеточного дыхания.
Внутренняя среда митохондрии называется матрикс. В нем находятся кольцевая ДНК и мелкие (70S) рибосомы, за счет них митохондрии самостоятельно делают для себя часть белков, поэтому их называют полуавтономными органоидами.
В процессе полного расщепления глюкозы образовалось 684 молекулы АТФ. Сколько молекул глюкозы подверглось расщеплению? Сколько молекул АТФ образовалось в результате гликолиза? Запишите два числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).
В процессе гликолиза образовалось 84 молекулы пировиноградной кислоты. Какое число молекул глюкозы подверглось расщеплению и сколько молекул АТФ образуется при её полном окислении? Запишите два числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).
В диссимиляцию вступило 15 молекул глюкозы. Определите количество АТФ после гликолиза, после энергетического этапа и суммарный эффект диссимиляции. Запишите три числа в порядке, указанном в задании, без разделителей (пробелов, запятых и т.п.).
Выберите один, наиболее правильный вариант. Расщепление липидов до глицерина и жирных кислот происходит в
1) подготовительную стадию энергетического обмена
2) процессе гликолиза
3) кислородную стадию энергетического обмена
4) ходе пластического обмена
Все перечисленные ниже признаки, кроме двух, можно использовать для описания процесса кислородного дыхания. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) аэробный процесс
2) молекула глюкозы распадается на две молекулы молочной кислоты
3) образуется 36 молекул АТФ
4) осуществляется в митохондриях
5) энергия аккумулируется в двух молекулах АТФ
Выберите один, наиболее правильный вариант. Сколько молекул АТФ запасается в процессе гликолиза?
1) 2
2) 32
3) 36
4) 40
1. Установите соответствие между процессами и этапами катаболизма: 1) подготовительный, 2) гликолиз, 3) клеточное дыхание. Запишите цифры 1, 2, 3 в порядке, соответствующем буквам.
А) синтез 2 молекул АТФ
Б) окисление пировиногразной кислоты до углекислого газа и воды
В) гидролиз сложных органических веществ
Г) расщепление глюкозы
Д) рассеивание выделевшейся энергии в виде тепла
Е) синтез 36 молекул АТФ
2. Установите соответствие между характеристиками и этапами энергетического обмена: 1) подготовительный, 2) бескислородный, 3) кислородный. Запишите цифры 1 и 2 в правильном порядке.
А) образуется пировиноградная кислота
Б) процесс протекает в лизосомах
В) синтезируется более 30 молекул АТФ
Г) образуется только тепловая энергия
Д) процесс протекает на кристах митохондрий
Е) процесс протекает в гиалоплазме
3. Установите соответствие между процессами и этапами энергетического обмена: 1) подготовительный, 2) анаэробный, 3) аэробный. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) гидролитиечское расщепление органических веществ
Б) бескислородное расщепление глюкозы
В) циклические реакции
Г) образование ПВК
Д) протекание в митохондриях
Е) рассеивание энергии в виде тепла
Все перечисленные ниже признаки, кроме двух, описывают реакции, происходящие в ходе энергетического обмена у человека. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) образование кислорода из воды
2) синтез 38 молекул АТФ
3) расщепление глюкозы до двух молекул пировиноградной кислоты
4) восстановление углекислого газа до глюкозы
5) образование углекислого газа и воды в клетках
Установите соответствие между процессом и этапом энергетического обмена, на котором этот процесс происходит: 1) бескислородный, 2) кислородный. Запишите цифры 1 и 2 в правильном порядке.
А) транспорт электронов по цепи переноса
Б) полное окисление до СО2 и Н2О
В) образование пировиноградной кислоты
Г) гликолиз
Д) синтез 36 молекул АТФ
1. Установите последовательность этапов окисления молекул крахмала в ходе энергетического обмена
1) образование молекул ПВК (пировиноградной кислоты)
2) расщепление молекул крахмала до дисахаридов
3) образование углекислого газа и воды
4) образование молекул глюкозы
2. Установите последовательность процессов, протекающих на каждом этапе энергетического обмена человека.
1) расщепление крахмала до глюкозы
2) полное окисление пировиноградной кислоты
3) поступление мономеров в клетку
4) гликолиз, образование двух молекул АТФ
3. Установите последовательность процессов, происходящих при обмене углеводов в организме человека. Запишите соответствующую последовательность цифр.
1) расщепление крахмала под действием ферментов слюны
2) полное окисление до углекислого газа и воды
3) расщепление углеводов под действием ферментов поджелудочного сока
4) анаэробное расщепление глюкозы
5) всасывание глюкозы в кровь и транспорт к клеткам тела
4. Установите последовательность процессов окисления молекулы крахмала в ходе энергетического обмена. Запишите соответствующую последовательность цифр.
1) образование лимонной кислоты в митохондрии
2) расщепление молекул крахмала до дисахаридов
3) образование двух молекул пировиноградной кислоты
4) образование молекулы глюкозы
5) образование углекислого газа и воды
Выберите один, наиболее правильный вариант. На подготовительной стадии энергетического обмена исходными веществами являются
1) аминокислоты
2) полисахариды
3) моносахариды
4) жирные кислоты
Выберите один, наиболее правильный вариант. Где протекает анаэробный этап гликолиза?
1) в митохондриях
2) в легких
3) в пищеварительной трубке
4) в цитоплазме
1. Установите соответствие между характеристикой энергетического обмена и его этапом: 1) гликолиз, 2) кислородное окисление
А) происходит в анаэробных условиях
Б) происходит в митохондриях
В) образуется молочная кислота
Г) образуется пировиноградная кислота
Д) синтезируется 36 молекул АТФ
2. Установите соответствие между признаками и этапами энергетического обмена: 1) гликолиз, 2) дыхание. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) протекает в цитоплазме
Б) запасается 36 молекул АТФ
В) протекает на кристах митохондрий
Г) образуется ПВК
Д) протекает в матриксе митохондрий
3. Установите соответствие между характеристикой и этапом обмена веществ, к которому её относят: 1) гликолиз, 2) кислородное расщепление. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) расщепляется ПВК до СО2 и Н2О
Б) расщепляется глюкоза до ПВК
В) синтезируется две молекулы АТФ
Г) синтезируется 36 молекул АТФ
Д) возник на более позднем этапе эволюции
Е) происходит в цитоплазме
Установите соответствие между процессами энергетического обмена и его этапами: 1) бескислородный, 2) кислородный. Напишите цифры 1 и 2 в правильной последовательности.
А) расщепление глюкозы в цитоплазме
Б) синтез 36 молекул АТФ
В) образование молочной кислоты
Г) полное окисление веществ до СО2 и Н2О
Д) образование пировиноградной кислоты
1. Установите соответствие между характеристикой энергетического обмена веществ и его этапом: 1) подготовительный, 2) гликолиз. Запишите цифры 1 и 2 в правильном порядке.
А) происходит в цитоплазме
Б) происходит в лизосомах
В) вся освобождаемая энергия рассеивается в виде тепла
Г) за счет освобождаемой энергии синтезируются 2 молекулы АТФ
Д) расщепляются биополимеры до мономеров
Е) расщепляется глюкоза до пировиноградной кислоты
2. Установите соответствие между процессами и этапами клеточного дыхания: 1) подготовительный, 2) гликолиз. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) протекает в гиалоплазме клеток
Б) происходит при участии гидролитических ферментов лизосом
В) расщепление биополимеров до мономеров
Г) процесс образования энергии для анаэробов
Д) образуется ПВК
Какие утверждения об этапах энергетического обмена верны? Определите три верных утверждения и запишите цифры, под которыми они указаны.
1) Анаэробный этап энергетического обмена протекает в кишечнике.
2) Анаэробный этап энергетического обмена протекает без участия кислорода.
3) Подготовительный этап энергетического обмена – это расщепление макромолекул до мономеров.
4) Аэробный этап энергетического обмена протекает без участия кислорода.
5) Аэробный этап энергетического обмена протекает до образования конечных продуктов СО2 и Н2О.
Установите соответствие между процессом и этапом энергетического обмена, в котором он происходит: 1) бескислородный, 2) кислородный
А) расщепление глюкозы
Б) синтез 36 молекул АТФ
В) образование молочной кислоты
Г) полное окисление до СО2 и Н2О
Д) образование ПВК, НАД-2Н
1. Все перечисленные ниже признаки, кроме двух, используются для написания изображенного на рисунке органоида эукариотической клетки. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны:
1) внутренняя мембрана образует тилакоиды
2) внутренняя полость органоида – строма
3) двумембранный органоид
4) осуществляет синтез АТФ
5) размножается путем деления
2. Все перечисленные ниже признаки, кроме двух, используются для написания изображенного на рисунке органоида эукариотической клетки. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны:
1) внутренняя мембрана образует тилакоиды
2) внутренняя полость органоида – строма
3) двумембранный органоид
4) осуществляет синтез АТФ
5) размножается путем деления
3. Все приведённые ниже признаки, кроме двух, можно использовать для описания митохондрий. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.
1) не делятся в течение жизни клетки
2) имеют собственный генетический материал
3) являются одномембранными
4) содержат ферменты окислительного фосфорилирования
5) имеют двойную мембрану
4. Все приведённые ниже признаки, кроме двух, можно использовать для описания строения и функций митохондрий. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.
1) расщепляют биополимеры до мономеров
2) содержат соединённые между собой граны
3) имеют ферментативные комплексы, расположенные на кристах
4) окисляют органические вещества с образованием АТФ
5) имеют наружную и внутреннюю мембраны
5. Все приведённые ниже признаки, кроме двух, можно использовать для описания строения и функций митохондрий. Определите два признака, «выпадающих» из общего списка, и запишите в ответ цифры, под которыми они указаны.
1) расщеплении биополимеров до мономеров
2) расщеплении молекул глюкозы до пировиноградной кислоты
3) окислении пировиноградной кислоты до углекислого газа и воды
4) запасании энергии в молекулах АТФ
5) образовании воды при участии атмосферного кислорода
Все перечисленные ниже процессы, кроме двух, относятся к энергетическому обмену. Определите два процесса, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) дыхание
2) фотосинтез
3) синтез белка
4) гликолиз
5) брожение
Выберите один, наиболее правильный вариант. Чем характеризуются процессы биологического окисления
1) большой скоростью и быстрым выделением энергии в виде тепла
2) участием ферментов и ступенчатостью
3) участием гормонов и малой скоростью
4) гидролизом полимеров
Выберите три особенности строения и функций митохондрий
1) внутренняя мембрана образует граны
2) входят в состав ядра
3) синтезируют собственные белки
4) участвуют в окислении органических веществ до углекислого газа и воды
5) обеспечивают синтез глюкозы
6) являются местом синтеза АТФ
Реакции подготовительного этапа энергетического обмена происходят в
1) хлоропластах растений
2) каналах эндоплазматической сети
3) лизосомах клеток животных
4) органах пищеварения человека
5) аппарате Гольджи эукариот
6) пищеварительных вакуолях простейших
Что характерно для кислородного этапа энергетического процесса?
1) протекает в цитоплазме клетки
2) образуются молекулы ПВК
3) встречается у всех известных организмов
4) протекает процесс в матриксе митохондрий
5) наблюдается высокий выход молекул АТФ
6) имеются циклические реакции
Проанализируйте таблицу «Этапы энергетического обмена углеводов в клетке». Для каждой ячейки, обозначенной буквой, выберите соответствующий термин или соответствующее понятие из предложенного списка.
1) аппарат Гольджи
2) лизосомы
3) образование 38 молекул АТФ
4) образование 2 молекул АТФ
5) фотосинтез
6) темновая фаза
7) аэробный
8) пластический
Проанализируйте таблицу «Энергетический обмен». Для каждой буквы выберите соответствующий термин из предложенного списка.
1) анаэробный
2) кислородный
3) пресинтетический
4) подготовительный
5) две молекулы пировиноградной кислоты
6) две молекулы АТФ
7) окислительное фосфорилирование
8) гликолиз
Установите соответствие между процессами и этапами энергетического обмена: 1) бескислородный, 2) подготовительный. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) расщепляются молекулы крахмала
Б) синтезируются 2 молекулы АТФ
В) протекают в лизосомах
Г) участвуют гидролитические ферменты
Д) образуются молекулы пировиноградной кислоты
Известно, что митохондрии – полуавтономные органоиды клеток аэробных эукариотических организмов. Выберите из приведенного ниже текста три утверждения, по смыслу относящиеся к описанным выше признакам, и запишите цифры, под которыми они указаны. (1) Митохондрии – достаточно крупные органоиды, занимают значительную часть цитоплазмы клетки. (2) Митохондрии имеют свою собственную кольцевую ДНК и мелкие рибосомы. (3) С помощью микросъемки живых клеток удалось обнаружить, что митохондрии подвижны и пластичны. (4) Клетки организмов, нуждающихся в свободном молекулярном кислороде для процессов дыхания, в митохондриях окисляют ПВК до углекислого газа и воды. (5) Митохондрии можно назвать энергетическими станциями клетки, так как выделяющаяся в них энергия запасается в молекулах АТФ. (6) Ядерный аппарат регулирует все процессы жизнедеятельности клетки, включая деятельность митохондрий.
источник
Фотосинтез и дыхание – два процесса, лежащие в основе жизни. Они оба происходят в клетке. Первый – в растительных и некоторых бактериальных, второй – и в животных, и в растительных, и в грибных, и в бактериальных.
Можно сказать, что клеточное дыхание и фотосинтез – процессы, противоположные друг другу. Отчасти это правильно, так как при первом поглощается кислород и выделяется углекислый газ, а при втором – наоборот. Однако эти два процесса некорректно даже сравнивать, поскольку они происходят в разных органоидах с использованием разных веществ. Цели, для которых они нужны, тоже различны: фотосинтез необходим для получения питательных веществ, а клеточное дыхание – для выработки энергии.
Это химическая реакция, направленная на получение органических веществ из неорганических. Обязательным условием протекания фотосинтеза является присутствие солнечного света, так как его энергия выступает в роли катализатора.
Фотосинтез, характерный для растений, можно выразить следующим уравнением:
То есть из шести молекул диоксида карбона и стольких же молекул воды в присутствии солнечного света растение может получить одну молекулу глюкозы и шесть кислорода.
Это самый простой пример фотосинтеза. Кроме глюкозы в растениях могут синтезироваться и другие, более сложные углеводы, а также органические вещества из других классов.
Вот пример выработки аминокислоты из неорганических соединений:
Как видим, из шести молекул диоксида углерода, четырех молекул воды, двух сульфат-ионов, двух нитрат-ионов и шести ионов водорода с использованием солнечной энергии можно получить две молекулы цистеина и тринадцать — кислорода.
Процесс фотосинтеза происходит в специальных органоидах – хлоропластах. В них содержится пигмент хлорофилл, который выступает в роли катализатора для химических реакций. Такие органоиды есть только в растительных клетках.
Это органоид, который обладает формой вытянутого шара. Размер хлоропласта обычно составляет 4-6 мкм, однако в клетках некоторых водорослей можно обнаружить гигантские пластиды – хроматофоры, размер которых достигает 50 мкм.
Этот органоид относится к двухмембранным. Он окружен внешней и внутренней оболочками. Они отделены друг от друга межмембранным пространством.
Внутренняя среда хлоропласта называется «строма». В ней находятся тилакоиды и ламеллы.
Тилакоиды – это плоские дискообразные мешочки из мембран, в которых находится хлорофилл. Именно здесь и происходит фотосинтез. Собираясь в стопки, тилакоиды образуют граны. Количество тилакоидов в гране может варьироваться от 3 до 50.
Ламеллы – это структуры, образованные мембранами. Они представляют собой сеть разветвленных каналов, основная функция которых – обеспечить связь между гранами.
В хлоропластах также содержатся свои рибосомы, необходимые для синтеза белков, и собственные ДНК и РНК. Кроме того, здесь могут находиться включения, состоящие из запасных питательных веществ, в основном крахмала.
Существует несколько видов данного процесса. Бывает анаэробное и аэробное клеточное дыхание. Первое характерно для бактерий. Анаэробное дыхание бывает нескольких типов: нитратное, сульфатное, серное, железное, карбонатное, фумаратное. Такие процессы позволяют бактериям получить энергию без использования кислорода.
Аэробное клеточное дыхание характерно для всех остальных организмов, в том числе животных и растений. Оно происходит при участии кислорода.
У представителей фауны клеточное дыхание происходит в специальных органоидах. Они называются митохондриями. У растений также клеточное дыхание происходит в митохондриях.
Клеточное дыхание проходит в три стадии:
- Подготовительный этап.
- Гликолиз (анаэробный процесс, не требует кислорода).
- Окисление (аэробный этап).
Первый этап заключается в том, что сложные вещества в пищеварительной системе расщепляются на более простые. Таким образом, из белков получаются аминокислоты, из липидов – жирные кислоты и глицерин, из сложных углеводов – глюкоза. Эти соединения транспортируются в клетку, а затем – непосредственно в митохондрии.
Он заключается в том, что под действием ферментов глюкоза расщепляется до пировиноградной кислоты и атомов водорода. При этом образуется АТФ (аденозинтрифосфорная кислота). Этот процесс можно выразить таким уравнением:
Таким образом, в процессе гликолиза из одной молекулы глюкозы организм может получить две молекулы АТФ.
На данном этапе образовавшаяся во время гликолиза пировиноградная кислота под действием ферментов реагирует с кислородом, в результате чего образуется углекислый газ и атомы водорода. Эти атомы затем транспортируются на кристы, где окисляются, образуя воду и 36 молекул АТФ.
Итак, в процессе клеточного дыхания в общей сложности образуется 38 молекул АТФ: 2 на втором этапе и 36 – на третьем. Аденозинтрифосфорная кислота и есть основной источник энергии, которым митохондрии снабжают клетку.
Органоиды, в которых происходит дыхание, есть и в животных, и в растительных, и в грибных клетках. Они обладают шаровидной формой и размером около 1 микрона.
Митохондрии, как и хлоропласты, имеют две мембраны, разделенные межмембранным пространством. То, что находится внутри оболочек этого органоида, называется матриксом. В нем находятся рибосомы, митохондриальная ДНК (мтДНК) и мтРНК. В матриксе проходит гликолиз и первая стадия окисления.
Из внутренней мембраны формируются складки, похожие на гребни. Они называются кристами. Здесь проходит вторая стадия третьего этапа клеточного дыхания. Во время нее образуется больше всего молекул АТФ.
Учеными доказано, что структуры, которые обеспечивают фотосинтез и дыхание, появились в клетке путем симбиогенеза. То есть когда-то это были отдельные организмы. Этим объясняется то, что и в митохондриях, и в хлоропластах есть свои рибосомы, ДНК и РНК.
источник
Схема, объясняющая сходство иммунной реакции при травме и инфекции. Митохондрии сохранили в структуре своих белков и ДНК специфические бактериальные признаки. Поэтому вещества, попадающие в кровь при разрушении митохондрий, провоцируют иммунный ответ.
Большой вклад в изучение биоэнергетики клетки внес Российский ученый, Академик РАН Владимир Петрович Скулачев – основатель Российской научной школы по биоэнергетике. Изучая структуру биологических мембран про- и эукариот, он выдвинул ряд интересных гипотез относительно эволюции биоэнергетических механизмов клетки, функций клеточного дыхания, значения кислорода в работе клеток и ряд других интересных идей. Они очень важны для понимания существа биологических процессов в природе.
1. Главной функцией является, без сомнения, запасание энергии в форме высокоэргичных связей молекул АТФ, ГТФ, НАДФ и др.
2. Использование энергии протонного потенциала не только для синтеза АТФ, но и для выделения тепла и терморегуляции. Это особенно выражено при использовании клетками и организмом протонного потенциала для производства тепла из жиров. Образующиеся при ферментном гидролизе жиров анионы жирных кислот связывают в межмембранном пространстве ионы водорода, которые туда перекачивает дыхательная цепь митохондрии, а затем транспортирует их обратно в матрикс митохондрии, минуя АТФ-синтазу! Здесь ионы водорода отсоединяются от аниона жирной кислоты и он с помощью специальных мембранных белков-переносчиков возвращается в межмембранное пространство митохондрии и далее в цитоплазму клетки. Происходит разобщение цепей клеточного дыхания и синтеза АТФ – энергия тратится на выделение тепла, что особенно необходимо для поддержания постоянной температуры тела теплокровных животных при охлаждении. Для этого в организме млекопитающих есть даже специальная жировая ткань – т.н. «бурый жир». В его клетках очень много митохондрий, которые принимают участие в выработке тепла.
3. Участие клеточного дыхания в синтезе некоторых биологически-активных соединений в клетке. Оказалось, что синтез стероидных гормонов в клетках коры надпочечников из молекул холестерина идет путем окисления этой молекулы в митохондриях. Для этого используется часть кислорода, специальная дыхательная цепь переносчиков протонов и электронов, не связанная с синтезом АТФ. Такие-же процессы проходят при синтезе жиров из углеводов. Таким образом, часть энергии окислительно-востановительных реакций в митохондриях используется не для синтеза АТФ и запасания энергии, а для синтеза веществ. Тем самым, еще раз, подчеркивается тесная связь энергетического и пластического обменов в клетке и возможность взаимных переходов их друг в друга.
4. Кислород с помощью системы специальных цитохром-оксидаз участвует в удалении вредных веществ из клетки. При этом данная цепь окислительных реакций не связана с образованием АТФ, и локализована она не в митохондриях, а в мембранах эндоплазматической сети. Окисленные органические молекулы затем выводятся почками или расщепляются дальше.
5. Кислород, как ни парадоксально это звучит, не только основа аэробного обмена клеток, но и очень опасное вещество для клетки!. Избыток кислорода или нарушение в дыхательных цепях митохондрий может привести к образованию большого количества свободных радикалов кислорода – супероксида О2 + . Это чрезвычайно активное соединение, которое «вмешивается» во множество биохимических реакций клетки, способствует образованию еще более активного соединения – перекиси водорода Н2О2, образующей еще один радикал— гидроксил радикал ОН + . Он, в свою очередь, способен окислить любое вещество в клетке, включая ДНК и РНК. Повреждение «главных молекул клетки» — это мутации, что может привести к гибели клетки или к изменению ее свойств и функций, вплоть до ракового перерождения. К счастью, в клетке есть ряд механизмов защиты от активных форм кислорода.
Подводя итог разговора об энергетическом метаболизме клетки можно выделить три главных закономерности этого процесса, сформулированные кратко и очень четко акад. В.П.Скулачевым в виде т.н. «законов биоэнергетики». Этим законам подчиняются все живые существа на Земле, независимо от типа питания, источников энергии и способов ее добычи.
Первый закон.
Клетки не используют энергию внешних источников (свет, органические и неорганические соединения) напрямую для выполнения работы. Они превращают «внешнюю» энергию сначала в один из видов внутриклеточной энергии: молекулы АТФ или ∆μ Н + (протонный потенциал) или ∆μ Na + (натриевый потенциал).
Второй закон.
Любая клетка всегда может в данный момент обладать и использовать, по меньшей мере, два источника энергии: водорастворимые молекулы АТФ(ГТФ) в цитоплазме и связанные с мембранами ионные потоки (∆μ Н + или ∆μ Na + ).
Третий закон.
Не нашли то, что искали? Воспользуйтесь поиском:
источник