Какие есть постоянные ткани по функциям

Образовательные ткани (меристемы).Они обеспечивают непрекращающийся рост растений. Клетки меристемы длительное время сохраняют способность к делению, не превращаясь при этом в постоянные ткани. Клетки меристем паренхимной формы, мелкие, тонкостенные, с густой цитоплазмой и крупным ядром. Меристемы подразделяются на несколько типов. По происхождению меристемы бывают первичные и вторичные. Первичные образуются при дроблении зиготы после оплодотворения. Из первичных меристем образуются первичные постоянные ткани. Вторичные меристемы образуются позже либо из первичных меристем, либо из постоянных тканей. Из них формируются все вторичные постоянные ткани. По расположению и строению меристемы делятся:

1) верхушечные (апикальные) меристемы локализуются на верхушке стебля, на конце корня. Являются первичными. Эти меристемы обеспечивают рост корня и побегов в длину.

2) боковые (латеральные) меристемы, которые обеспечивают рост стеблей и корней в толщину. Могут быть первичными (прокамбий, перицикл), вторичными (камбий, образующий проводящие ткани).

3) вставочная (интеркалярная) меристема локализуется у основания междоузлий стебля (в узлах) или у основания молодых листьев, за счет нее до определенного предела растут стебель и листья. Определяет способность злаков подниматься после полегания.

4) раневаямеристема: если растение повреждено, но не погибло, то у места повреждения из клеток постоянных тканей возникает этот тип меристем. Является вторичной. В месте ранения образует защитную пробку.

При делении клеток меристемы новые клетки дифференцируются в постоянные ткани и выполняют различные функции.

Ассимиляционные ткани. В этих тканях происходит фотосинтез. Эти ткани (например, мезофилл листа) располагаются, в основном, в листе и в стебле и состоят из паренхимных клеток, содержащих хлоропласты.

Запасающие ткани. Их функция — запас питательных веществ. Эти ткани состоят из самых крупных паренхимных клеток и располагаются в стеблях, корнях, корневищах, клубнях, луковицах. Запасающие вещества — широкий спектр белков, жиров и углеводов.

Воздухоносная ткань (аэренхима). Это паренхимная ткань с очень большими межклетниками. Ее основная функция — вентиляция. По межклетникам кислород из листьев может проникать во все части растения. Это очень важное приспособление для водных и болотных видов растений, кроме того, увеличивает их плавучесть и возможность находиться в толще воды.

Всасывающие ткани, состоят из тонкостенных клеток, плотно расположенных друг к другу с крупными вакуолями. Эти ткани в основном представлены ризодермой. Ризодерма — это ткань молодых корней. Основную массу воды и солей растение воспринимает через участок ризодермы с корневыми волосками (зона всасывания).

Покровные ткани. Появились у растений в связи с выходом на сушу и выполняют функцию защиты от высыхания, проникновения внутрь микроорганизмов, механических повреждений, а также регулируют транспирацию и газообмен. Молодые стебли и листья покрыты эпидермисом (кожицей), состоящей из живых паренхимных клеток, не содержащих хлоропластов, но имеющих вакуоли. Пигменты вакуолей способны давать лилово-красное окрашивание листьев и стеблей. Наружные стенки клеток эпидермиса сильно утолщены и покрыты водонепроницаемой кутикулой. У некоторых растений поверх кутикулы развит восковой налет. Эпидермальные клетки способны образовывать выросты: кроющие волоски, шип шиповника, жгучие волоски крапивы. Важной составляющей эпидермиса являются устьица. Они состоят из двух замыкающих клеток бобовидной формы и устьичной щели между ними. Устьичный аппарат регулирует поступление воздуха внутрь растения, выделение кислорода и паров воды (т.е. транспирацию — испарение).

У многолетних наземных органов растений первичная покровная ткань (эпидермис) сменяется вторичной — пробкой (перидермой). Толщина может быть от 0,5 см до 12 см. клетки мертвые (опробковевшие), заполнены воздухом. По мере утолщения стебля и образования перидермы эпидермис сбрасывается, и стебель из зеленого становится бурым. Стебли с перидермой способны к перезимовыванию. Для обеспечения газообмена в передерме формируются чечевички.

У некоторых древесных пород формируется и третичная покровная ткань — корка, образующаяся в результате многократного заложения новых слоев перидермы в более глубоких слоях коры.

Выделительные ткани. Эти ткани накапливают или выводят из растения отработанные вещества. Поэтому выделительные ткани подразделяют на внутренние и внешние. Внутренние выделительные тканинакапливают продукты метаболизма внутри организма. Для этой цели служат разобщенные клетки — идиобласты. Вместилищем выделений могут стать межклетники. Так, например, образуются смоляные ходы у хвойных растений. Млечный сок, накапливаемый в вакуолях клеток — млечников, также является продуктом метаболизма (например, у одуванчиков). Наружные выделительные ткани в основном представлены железистыми волосками, гидатодами, нектарниками и пищеварительными железками, как, например, у насекомоядных растений (у росянки). Железистые волоски выделяют эфирные масла, соли и т.д. Гидатоды — группы клеток, способные выделять излишки воды с солями. Нектарники располагаются в цветках и выделяют сахаристую жидкость — нектар, а пищеварительные железки выделяют ферменты, необходимые для переваривания пойманных насекомых.

Механические ткани. Эти ткани выполняют опорную функцию, поддерживают растения в наземно-воздушной среде. В зависимости от формы клеток и способа утолщения их стенок различают 2 типа механических тканей:

• склеренхиму (волокна и склереиды).

Колленхима — это механическая ткань, состоящая из живых клеток, обычно паренхимных. Ее клетки утолщены дополнительными отложениями слоев целлюлозы. Эта ткань встречается в черешках и пластинах листьев, в растущих частях стеблей.

Склеренхимасостоит из одревесневших клеток прозенхимной формы, которые называют волокнами. Содержимое клеток склеренхимы отмирает, и механическую функцию выполняют утолщенные оболочки клеток ткани. Склереиды — это паренхимные клетки с сильно утолщенными одревесневшими оболочками. Располагаются либо по одиночке, либо группами, встречаются в разных органах (например, скорлупа ореха, косточки сливы, каменистые клетки плода груши).

Механические ткани, в целом, создают прочный каркас тела растения, который заполняется упругой массой живых клеток.

Проводящие ткани.Эти ткани осуществляют функцию проведения воды и питательных веществ в организме растений. У растения есть 2 типа проводящих тканей: ксилема и флоэма.

По ксилеме (древесине) осуществляется восходящий ток: передвижение воды и минеральных солей из корня ко всем органам растений. Ксилема — это сложная ткань, состоящая из собственно проводящих элементов (сосудов и трахеид), а также из клеток, выполняющих механическую (древесные волокна) и запасающую (древесная паренхима) функции. Трахеиды — мертвые, вытянутые клетки с утолщенными клеточными стенками. Оболочка пронизана многочисленными порами, через которые осуществляется движение воды и минеральных веществ. Трахеиды характерны для плаунов, хвощей, папоротниковидных и голосеменных, где они несут и проводящую, и механическую функции. У цветковых растений ксилема представлена более совершенными сосудами.Это ряд мертвых клеток, расположенных одна под другой. Перегородки между ними полностью отсутствуют. Клеточные стенки способны утолщаться (лигнин). Различают следующие виды утолщения клеточной стенки: кольчатый сосуд (утолщение в виде колец), спиральный сосуд (в виде спирали); лестничный (в виде лесенки); поровый (пороподобное утолщение).Нисходящий ток растворенных органических веществ, поступающих от листьев, осуществляет флоэма. В состав флоэмы входят ситовидные клетки и трубки, по которым происходит передвижение растворов, а также запасающие (лубяная паренхима) и механические (лубяные волокна) элементы. Ситовидные трубки покрытосеменных растений состоят из цепочки живых клеток. Между члениками смежными трубок расположены перегородки (ситовидные пластинки), через которыепротопласты соседних члеников сообщаются при помощи цитоплазматических тяжей. Ситовидные клетки характерны для хвощей, плаунов, папоротников и голосеменных растений.

Проводящие ткани вместе с волокнами механической ткани образуют сосудисто-волокнистые пучки. Эти пучки пронизывают все органы растения, объединяя их в единое целое. Сосудисто-волокнистые пучкиподразделяют на 2 типа: закрытые и открытые. Закрытыми называют такие пучки, в которых нет камбия и они не способны разрастаться в толщину. Такие пучки характерны для однодольных растений. Открытые пучки имеют в своем составе камбиальную ткань. Камбий представляет собой один слой постоянно делящихся клеток, которые развиваются в новые клетки, и дают вторичный прирост пучка в толщину. Такие пучки характерны для двудольных растений.

источник

Функции и особенности строения. Основные ткани занимают в органах растений наибольший объём. По своему назначению основные ткани являются прежде всего питающими, хотя могут выполнять и другие функции. Клетки основных тканей живые, паренхимной формы, расположены они обычно довольно рыхло, с большими межклетниками. Клеточные оболочки тонкие, целлюлозные, но иногда утолщаются и древеснеют.

Особенностью основных тканей является свойство их клеток при определённых условиях приобретать способность к делению и давать начало вторичной меристеме.

Классификация. В зависимости от выполняемых функций, происхождения и строения основные ткани подразделяются на несколько типов.

Ассимиляционная паренхима (хлоренхима). Этот тип основной ткани выполняет функцию образования органических веществ в процессе фотосинтеза и состоит из клеток, содержащих хлоропласты. Обычно ассимиляционная паренхима располагается непосредственно под покровной тканью в листьях и зелёных стеблях растений, а также в воздушных корнях некоторых эпифитов, поселяющихся на стволах высоких деревьев.

Запасающая паренхима. Эта ткань (рис. 31) приспособлена для накопления питательных веществ и главным образом представлена в подземных органах растений — клубнях, корневищах, луковицах, а также в плодах, семенах и значительно реже в листьях. В клетках запасающей паренхимы откладываются крахмал, жирные масла, сахара, белки, инулин и другие питательные вещества. Кроме того, в запасающей паренхиме обычно сосредоточены такие вещества, как алкалоиды, гликозиды, дубильные вещества и т. п.

Поглощающая паренхима. Она расположена во всасывающей части корня под покровной тканью и выполняет функцию передачи воды и минеральных веществ от корневых волосков во внутренние ткани корня.

Воздухоносная паренхима (аэренхима) Аэренхима развивается у растений, произрастающих в условиях избыточного увлажнения. Этот тип основной ткани характеризуется большими межклеточными пространствами (рис. 32), в которых скапливается воздух. Аэренхима встречается во всех органах водных и болотных растений — корнях, стеблях и листьях. У водных растений она способствует лучшей плавучести и уменьшает их плотность, помогая растениям держаться на поверхности воды.

Водоносная паренхима. Этот тип основной ткани состоит из крупных тонкостенных клеток, заполненных водой, и характерен для растений, обитающих в засушливых условиях. Из водоносной ткани состоят стебли кактусов, листья агав, алоэ и других растений полупустынь и пустынь. Слабо выраженная водоносная ткань имеется также у растений умеренной зоны — молодила, очитка, обитающих в условиях недостаточного увлажнения на песчаных почвах.

Дата добавления: 2015-04-25 ; Просмотров: 1836 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Выделяют следующие виды тканей растений:

  • образовательные (меристема);
  • покровные;
  • механические;
  • проводящие;
  • основные;
  • выделительные.

Все эти ткани имеют свои особенности строения и отличаются друг от друга выполняемыми функциями.

Рис.1 Ткани растений под микроскопом

Образовательная ткань – это первичная ткань, из которой образуются все другие ткани растения. Она состоит из особых клеток, способных к многократному делению. Именно из этих клеток состоит зародыш любого растения.

Эта ткань сохраняется и у взрослого растения. Она располагается:

  • внизу корневой системы и на верхушках стеблей (обеспечивает рост растения в высоту и развитие корневой системы) – верхушечная образовательная ткань;
  • внутри стебля (обеспечивает рост растения в ширину, его утолщение) – боковая образовательная ткань;

Покровная ткань относится к защитным тканям. Она необходима для того, чтобы защищать растение от резких перепадов температуры, от излишнего испарения воды, от микробов, грибов, животных и от всякого рода механических повреждений.

Покровные ткани растений образованы клетками, живыми и мертвыми, способными пропускать воздух, обеспечивая необходимый для роста растения газообмен.

Строение покровной ткани растений таково:

  • сначала расположена кожица или эпидерма, которая покрывает листья растения, стебли и наиболее уязвимые части цветка; клетки кожицы живые, эластичные, они защищают растение от излишней потери влаги;
  • далее находится пробка или перидерма, которая также располагается на стеблях и корнях растения (там, где образуется слой пробки, кожица отмирает); пробка защищает растение от неблагоприятных воздействий окружающей среды.

Также выделяют такой вид покровной ткани как корка. Эта самая прочная покровная ткань, пробка в данном случае образуется не только на поверхности, но и в глубине, причём верхние ее слои потихоньку отмирают. По сути, корка состоит из пробки и мёртвых тканей.

Рис.2 Корка – вид покровной ткани растения

Для дыхания растения в корке образуются трещинки, на дне которых располагаются специальные отростки, чечевички, через которые и происходит газообмен.

Механические ткани придают растению нужную ему прочность. Именно благодаря их наличию растение может выдерживать сильные порывы ветра и не ломаются под струями дождя и под тяжестью плодов.

Выделяют два основных вида механических тканей: лубяные и древесные волокна.

Проводящая ткань обеспечивает транспортировку воды с растворёнными в ней минералами.

Эта ткань образует две транспортные системы:

  • восходящую (от корней к листьям);
  • нисходящую (от листьев ко всем остальным частям растений).

Восходящая транспортная система состоит из трахеид и сосудов (ксилема или древесина), причём сосуды более совершенные проводящие средства, чем трахеиды.

В нисходящих системах ток воды с продуктами фотосинтеза проходит по ситовидным трубкам (флоэма или луб).

Ксилема и флоэма образуют сосудисто-волокнистые пучки – «кровеносную систему» растения, которая пронизывает его полностью, соединяя в одно целое.

Основная ткань или паренхима – является основой всего растения. В неё погружены все остальные виды тканей. Это живая ткань и выполняет она разные функции. Именно из-за этого выделяются разные её виды (информация о строении и функциях разных видов основной ткани представлена в таблице ниже).

Виды основной ткани Где располагается в растении Функции Строение
Ассимиляционная листья и другие зелёные части растения способствует синтезу органических веществ состоит из фотосинтезирующих клеток
Запасающая клубни, плоды, почки, семена, луковицы, корнеплоды способствует накапливанию необходимых для развития растения органических веществ тонкостенные клетки
Водоносная стебель, листья способствует накапливанию воды рыхлая ткань, состоящая из тонкостенных клеток
Воздухоносная стебель, листья, корни способствует проведению воздуха по растению тонкостенные клетки

Рис. 3 Основная ткань или паренхима растения

Название данной ткани говорит о том, какую именно функцию она играет. Эти ткани способствуют насыщению плодов растений маслами и соками, а также способствуют выделению листьям, цветками и плодами особого аромата. Таким образом, выделяют два вида это ткани:

  • ткани внутренней секреции;
  • ткани наружной секреции.

Учащимся 6 класса к уроку биологии нужно запомнить, что животные и растения состоят из множества клеток, которые, в свою очередь, упорядоченно выстраиваясь, образуют ту или иную ткань. Мы выяснили какие виды тканей существуют у растений – образовательная, покровная, механическая, проводящая, основная и выделительная. Каждая ткань выполняет свою, строго определённую функцию, защищая растение или обеспечивая доступ всех его частей к воде или воздуху.

источник

Ткани — это структуры, состоящие из множества похожих клеток, которые объединены общими функциями. Все многоклеточные животные и растения (за исключением водорослей) состоят из различных типов тканей.

У животных ткани разделяются на четыре типа:

  • эпителиальные;
  • мышечные;
  • соединительные;
  • нервная ткань.

Все они, за исключением нервной, подразделяются, в свою очередь, на виды. Так, эпителий может быть кубическим, плоским, цилиндрическим, реснитчатым и чувствительным. Мышечные ткани делятся на поперечно-полосатую, гладкую и сердечную. Группа соединительных объединяет жировую, плотную волокнистую, рыхлую волокнистую, ретикулярную, костную и хрящевую, кровь и лимфу.

Растительные ткани бывают таких типов:

  • образовательные;
  • проводящие;
  • покровные;
  • механическая ткань;
  • выделительная (секреторная);
  • основная ткань (паренхима).

Все они делятся на подгруппы. Так, к образовательным тканям относятся верхушечные, вставочные, боковые и раневые. Проводящие делятся на ксилему и флоэму. Покровные ткани объединяют три вида: эпидерма, пробка и корка. Механическая делится на колленхиму и склеренхиму. Секреторная ткань не делится на виды. А основная ткань растений, как и все другие, бывает нескольких видов. Рассмотрим их подробнее.

Существует четыре ее вида. Так, основная ткань бывает:

  • водоносной;
  • воздухоносной;
  • ассимиляционной;
  • запасающей.

Они обладают подобным строением, но имеют и некоторые отличия друг от друга. Функции основных тканей этих четырех видов тоже несколько различны.

Основная ткань всех четырех видов состоит из живых клеток с тонкими стенками. Ткани этого типа называются так потому, что они составляют основу всех жизненно важных органов растения. Теперь давайте рассмотрим функции и строение основных тканей каждого вида по отдельности более подробно.

Основная ткань данного вида построена из крупных клеток, обладающих тонкими стенками. В вакуолях клеток этой ткани содержится специальное слизистое вещество, которое предназначено для того, чтобы удерживать влагу.

Функции водоносной ткани заключаются в том, что она запасает влагу.

Находится водоносная паренхима в стеблях и листьях таких растений, как кактусы, агава, алоэ и других, растущих в засушливом климате. Благодаря большому количеству такой ткани растение может запастись водой на случай, если дождя долго не будет.

Клетки основной ткани данного вида находятся на расстоянии друг от друга. Между ними находятся межклетники, в которых запасается воздух.

Функция этой паренхимы заключается в том, что она снабжает клетки других тканей растения углекислым газом и кислородом.

Присутствует такая ткань в основном в организме болотных и водных растений. У сухопутных она встречается редко.

Она состоит из средних по размеру клеток с тонкими стенками.

Внутри клеток ассимиляционной ткани в большом количестве находятся хлоропласты — органоиды, отвечающие за фотосинтез.

Эти органоиды обладают двумя мембранами. Внутри хлоропластов находятся тилакоиды — дисковидные мешочки с содержащимися в них ферментами. Они собраны в стопки — граны. Последние соединяются между собой с помощью ламелл — вытянутых структур, похожих на тилакоиды. Кроме того, в хлоропластах находятся крахмальные включения, рибосомы, необходимые для синтеза белков, собственная РНК и ДНК.

Процесс фотосинтеза — выработки органических веществ из неорганических под действием ферментов и солнечной энергии — происходит именно в тилакоидах. Основной фермент, который обеспечивает эти химические реакции, называется хлорофилл. Это вещество зеленого цвета (именно благодаря ему листья и стебли растений обладают такой окраской).

Итак, функции основных тканей этого вида — упомянутый выше фотосинтез, а также газообмен.

Ассимиляционная ткань наиболее развита в листьях и верхних слоях стеблей травянистых растений. Также она присутствует в плодах зеленого цвета. Ассимиляционная ткань находится не на самой поверхности листьев и стеблей, а под прозрачной защитной кожицей.

Клетки этой ткани характеризуются как средние по размеру. Их стенки обычно тонкие, но могут быть и утолщенными.

Функция запасающей паренхимы — хранение питательных веществ. В качестве таковых в большинстве случаев служит крахмал, инулин, а также другие углеводы, а иногда — белки, аминокислоты и жиры.

Находится ткань такого типа в зародышах семян однолетних растений, а также в эндосперме. У многолетних трав, кустов, цветов и деревьев запасающая ткань может находиться в луковицах, клубнях, корнеплодах, а также в сердцевине стебля.

Основная ткань — самая важная в организме растения, так как она является основой всех органов. Ткани данного типа обеспечивают все жизненно необходимые процессы, в том числе фотосинтез и газообмен. Также основные ткани отвечают за создание запасов органических веществ (в наибольшем количестве это крахмал) в самих растениях, а также в их семенах. Кроме питательных органических соединений, в паренхиме может запасаться воздух и вода. Воздухоносными и водоносными тканями обладают не все растения. Первые присутствуют только у пустынных, а вторые — у болотных разновидностей.

источник

Основные ткани составляют основную массу тела растения. Они состоят из живых, относительно мало специализированных клеток, чаще паренхимной формы, поэтому их часто называют паренхимными тканями, или паренхимой. В зависимости от выполняемой функции, различают несколько типов основных тканей.

Ассимиляционная ткань (хлорофиллоносная паренхима, хлоренхима) выполняет функцию фотосинтеза. Она располагается в основном в листьях и стеблях травянистых растений сразу за эпидермой. Клетки живые, тонкостенные, чаще паренхимной формы. 70-80% объема протопласта составляют хлоропласты. Характерно наличие межклетников, которые облегчают газообмен ( рис. 3.2).

Рис. 3.2. Поперечный срез листа красавки : 1 – клетки ассимиляционной ткани; 2 – клетки, заполненные кристаллическим песком кальция оксалата.

Запасающая паренхима служит местом отложения питательных веществ (крахмала, белков, жирных масел). Запасные питательные вещества могут откладываться в живых клетках любой ткани, но особенно ярко эта функция проявляется у специализированных запасающих тканей, хорошо развитых в семенах, корнях, подземных побегах (рис. 3.3.А ). Состоят запасающие ткани из живых тонкостенных клеток, чаще паренхимной формы.

Разновидностью запасающей ткани является водоносная паренхима, выполняющая функцию запасания воды. Она состоит из крупных живых тонкостенных клеток, как правило, паренхимной формы. Вода запасается в вакуолях за счет большого содержания слизей, обладающих высокой водоудерживающей способностью. Водоносная паренхима имеется в стеблях и листьях суккулентов (кактусы, агавы, алоэ), у многих растений солончаков (солерос, анабазис, саксаул), в листьях многих злаков. Много воды содержится в запасающих тканях луковиц и клубней.

Воздухоносная паренхима (аэренхима) выполняет функцию вентиляции, снабжая ткани и органы кислородом. Она хорошо развита в погруженных органах водных и болотных растений (кувшинка, кубышка, аир, вахта). Аэренхима состоит из живых клеток различной формы и крупных межклетников (рис. 3.3.Б ).

Рис. 3.3. Запасающая паренхима клубня картофеля ( A) и аэренхима стебля рдеста (Б): 1 – межклетник.

Механическая паренхима занимает промежуточное положение между основными и механическими тканями. Это живые паренхимные клетки со слегка утолщенной одревесневшей клеточной стенкой.

Неспециализированная паренхима (основная паренхима, неспецифическая паренхима) представляет собой живую паренхимную ткань без выраженной функции. Эта ткань всегда присутствует в теле растения, составляя его большую часть.

Покровные ткани располагаются на поверхности органов растений на границе с внешней средой. Они состоят из плотно сомкнутых клеток и защищают внутренние части растения от неблагоприятных внешних воздействий, излишнего испарения и иссушения, резкой перемены температуры, проникновения микроорганизмов, служат для газообмена и транспирации. В соответствии с происхождением из различных меристем выделяют первичные и вторичные покровные ткани.

К первичным покровным тканям относят: 1) ризодерму, или эпиблему и 2) эпидерму.

Ризодерма (эпиблема) – первичная однослойная поверхностная ткань корня. Образуется из протодермы – наружного слоя клеток апикальной меристемы корня. Основная функция ризодермы – всасывание, избирательное поглощение из почвы воды с растворенными в ней элементами минерального питания. Через ризодерму происходит выделение веществ, действующих на субстрат и преобразующих его. Клетки ризодермы тонкостенные, с вязкой цитоплазмой и большим количеством митохондрий (минеральные ионы поглощаются активно, с затратой энергии, против градиента концентрации). Характерной особенностью ризодермы является образование у части клеток корневых волосков – трубчатых выростов, в отличие от трихомов не отделенных стенкой от материнской клетки (рис. 3.4). Корневые волоски увеличивают поглощающую поверхность ризодермы в десять и более раз. Волоски имеют длину 1-2 (3) мм. Ризодерму часто рассматривают как всасывающую ткань.

Рис. 3.4. Кончик корня ожики многоцветковой: 1 – корневой волосок.

Эпидерма — первичная покровная ткань, образующаяся из протодермы конуса нарастания побега. Она покрывает листья, стебли травянистых и молодых побегов древесных растений, цветки, плоды и семена. Основная функция эпидермы – регуляция газообмена и транспирации (испарения воды живыми тканями). Кроме того, эпидерма выполняет целый ряд других функций. Она препятствует проникновению внутрь растения болезнетворных организмов, защищает внутренние ткани от механических повреждений и придает органам прочность. Через эпидерму могут выделяться наружу эфирные масла, вода, соли. Эпидерма может функционировать как всасывающая ткань. Она принимает участие в синтезе различных веществ, в восприятии раздражений, в движении листьев.

Эпидерма — сложная ткань, в ее состав входят морфологически различные типы клеток: 1) основные клетки эпидермы; 2) замыкающие и побочные клетки устьиц; 3) трихомы.

Основные клетки эпидермы – живые клетки таблитчатой формы. Вид клеток с поверхности различен (рис. 3.5). Клетки плотно сомкнуты, межклетники отсутствуют. Боковые стенки (перпендикулярные поверхности органа) часто извилистые, что повышает прочность их сцепления, реже прямые. Эпидермальные клетки осевых органов и листьев многих однодольных сильно вытянуты вдоль оси органа.

Рис. 3.5. Эпидерма листа различных растений (вид с поверхности): 1 — ирис; 2 — кукуруза; 3 – арбуз; 4 — буквица.

Наружные стенки клеток обычно толще остальных. Их внутренний, более мощный, слой состоит из целлюлозы и пектиновых веществ; наружный слой подвергается кутинизации. Поверх наружных стенок выделяется сплошной слой кутина, образующий защитную пленку – кутикулу. Помимо кутина в ее состав входят вкрапления воска, что еще больше снижает проницаемость кутикулы для воды и для газов. Воск может откладываться в кристаллической форме и на поверхности кутикулы в виде чешуек, палочек, трубочек и других структур, видимых только в электронный микроскоп. Этот сизый, легко стирающийся налет хорошо заметен на листьях капусты, плодах сливы, винограда. Мощность кутикулы, распределение в ней восков и кутина определяют химическую стойкость и проницаемость эпидермы для газов и растворов. В условиях засушливого климата у растений развивается более толстая кутикула. У растений, погруженных в воду, кутикула отсутствует.

Клетки эпидермы имеют живой протопласт, обычно с хорошо развитой эндоплазматической сетью и аппаратом Гольджи. У большинства видов растений в цитоплазме присутствуют лейкопласты. У водных растений, папоротников, обитателей тенистых мест (гибискус) встречаются редкие хлоропласты. Эпидерма чаще всего состоит из одного слоя клеток. Редко встречается двух- или многослойная эпидерма, преимущественно у тропических растений, живущих в условиях непостоянной обеспеченности водой (бегонии, пеперомии, фикусы). Нижние слои многослойной эпидермы функционируют как водозапасающая ткань. У некоторых растений клеточные стенки могут пропитываться кремнеземом (хвощи, злаки, осоки) или содержать слизи (семена льна, айвы, подорожников).

Устьица – образования для регуляции транспирации и газообмена. Устьице состоит из двух замыкающих клеток бобовидной формы, между которыми находится устьичная щель, которая может расширяться и сужаться. Под щелью располагается крупный межклетник – подустьичная полость. Клетки эпидермы, примыкающие к замыкающим клеткам, часто отличаются от остальных клеток, и тогда их называют побочными, или околоустьичными клетками (рис. 3.6 ). Они участвуют в движении замыкающих клеток.

Рис. 3.6. Схема строения устьица.

Замыкающие и побочные клетки образуют устьичный аппарат. В зависимости от числа побочных клеток и их расположения относительно устьичной щели выделяют несколько типов устьичного аппарата (рис. 3.7 ). В фармакогнозии типы устьичного аппарата используются для диагностики лекарственного растительного сырья.

Рис. 3.7. Типы устьичного аппарата : 1 – аномоцитный; 2 – диацитный; 3 – парацитный; 4 – анизоцитный; 5 – тетрацитный; 5 – энциклоцитный.

Аномоцитный тип устьичного аппарата обычен для всех групп растений, исключая хвощи. Побочные клетки в этом случае не отличаются от остальных клеток эпидермы. Диацитный тип характеризуется двумя побочными клетками, которые располагаются перпендикулярно устьичной щели. Этот тип обнаружен у некоторых цветковых растений, в частности, у большинства губоцветных (мята, шалфей, чабрец, душица) и гвоздичных. При парацитном типе две побочные клетки располагаются параллельно замыкающим и устьичной щели. Он найден у папоротников, хвощей и ряда цветковых растений. Анизоцитный тип обнаружен только у цветковых растений, в частности, он встречается у крестоцветных (пастушья сумка, желтушник) и пасленовых (белена, дурман, красавка). В этом случае замыкающие клетки окружены тремя побочными, одна из которых заметно крупнее или мельче остальных. Тетрацитным типом устьичного аппарата характеризуются преимущественно однодольные. При энциклоцитном типе побочные клетки образуют узкое кольцо вокруг замыкающих клеток. Подобная структура найдена у папоротников, голосеменных и некоторых цветковых.

Механизм движения замыкающих клеток основан на том, что стенки их утолщены неравномерно, поэтому форма клеток меняется при изменении их объема. Изменение объема клеток устьичного аппарата происходит вследствие изменения осмотического давления. Увеличение давления происходит за счет активного поступления из соседних клеток ионов калия, а также за счет повышения концентрации сахаров, образующихся в процессе фотосинтеза. За счет поступления воды объем вакуоли увеличивается, тургорное давление растет, и устьичная щель открывается. Отток ионов совершается пассивно, вода выходит из замыкающих клеток, их объем уменьшается, и устьичная щель закрывается. У большинства растений устьица открываются в светлое время суток и закрываются ночью. Это связано с тем, что фотосинтез протекает только на свету, и для него необходим приток из атмосферы углекислого газа.

Число и распределение устьиц очень варьируют в зависимости от вида растения и экологических условий. У большинства растений их число составляет 100-700 на 1мм 2 поверхности листа. С помощью устьиц эпидерма эффективно регулирует газообмен и транспирацию. Если устьица полностью открыты, то транспирация идет с такой же скоростью, как если бы эпидермы не было вовсе (согласно закону Дальтона, при одной и той же суммарной площади отверстий скорость испарения тем выше, чем больше число отверстий). При закрытых устьицах транспирация резко снижается и фактически может идти только через кутикулу.

У многих растений эпидерма образует наружные одно- или многоклеточные выросты различной формы – трихомы. Трихомы отличаются крайним разнообразием, оставаясь вместе с тем вполне устойчивыми и типичными для определенных видов, родов и даже семейств. Поэтому признаки трихомов широко используются в систематике растений и в фармакогнозии в качестве диагностических.

Трихомы делятся на: 1) кроющие и 2) железистые. Железистые трихомы образуют вещества, которые рассматриваются как выделения. Они будут рассмотрены в разделе, посвященном выделительным тканям.

Кроющие трихомы имеют вид простых, разветвленных или звездчатых волосков, одно- или многоклеточных (рис. 3.8 ). Кроющие трихомы могут длительное время оставаться живыми, но чаще они быстро отмирают и заполняются воздухом.

Густой слой волосков отражает часть солнечных лучей и уменьшает нагрев, создает затишное пространство около эпидермы, что в совокупности снижает транспирацию. Часто волоски образуют покров только там, где располагаются устьица, например на нижней стороне листьев мать-и-мачехи, багульника. Жесткие, колючие волоски защищают растения от поедания животными, сосочки на лепестках привлекают насекомых.

Рис. 3.8. Кроющие трихомы : 1-3 – простые одноклеточные, 4 – простой многоклеточный, 5 – ветвистый многоклеточный, 6 – простой двурогий, 7,8 – звездчатый (в плане и на поперечном разрезе листа).

От трихомов, образующихся только из эпидермальных клеток, следует отличать эмергенцы, в формировании которых принимают участие и более глубоко расположенные ткани. К ним относят шипы розы, малины, ежевики, покрывающие черешки листьев и молодые побеги.

К вторичным покровным тканям относятся: 1) перидерма и 2) корка, или ритидом.

Перидерма – сложная многослойная покровная ткань, которая приходит на смену первичным покровным тканям – ризодерме и эпидерме. Перидерма покрывает корни вторичного строения и стебли многолетних побегов. Она может возникнуть и в результате залечивания поврежденных тканей раневой меристемой.

Перидерма состоит из трех комплексов клеток, различных по строению и функциям. Это: 1) феллема, или пробка, выполняющая главные защитные функции; 2) феллоген, или пробковый камбий, за счет работы которого образуется перидерма в целом; 3) феллодерма, или пробковая паренхима, выполняющая функцию питания феллогена ( рис. 3.9).

Рис. 3.9. Строение перидермы стебля бузины .

Феллема (пробка) состоит из нескольких слоев таблитчатых клеток, расположенных плотно, без межклетников. Вторичные клеточные стенки состоят из чередующихся слоев суберина и воска, что делает их непроницаемыми для воды и газов. Клетки пробки мертвые, они не имеют протопласта и заполнены воздухом. В полости клеток могут также откладываться вещества, повышающие защитные свойства пробки.

Феллоген (пробковый камбий) – вторичная латеральная меристема. Это один слой меристематических клеток, откладывающих клетки пробки наружу и клетки феллодермы внутрь органа. Феллодерма (пробковая паренхима) относится к основным тканям и состоит из живых паренхимных клеток. Однако часто феллоген работает односторонне, откладывая только пробку, а феллодерма остается однослойной (рис. 3.9).

Главная функция пробки – защита от потери влаги. Кроме того, пробка предохраняет растение от проникновения болезнетворных организмов, а также дает механическую защиту стволам и ветвям деревьев, а феллоген залечивает нанесенные повреждения, образуя новые слои пробки. Поскольку клетки пробки заполнены воздухом, пробковый футляр обладает малой теплопроводностью и хорошо предохраняет от резких колебаний температуры.

У большинства деревьев и кустарников феллоген закладывается в однолетних побегах уже в середине лета. Чаще всего он возникает из паренхимных клеток, лежащих сразу под эпидермой (рис. 3.9 ). Иногда феллоген образуется в более глубоких слоях коры (смородина, малина). Редко эпидермальные клетки, делясь, превращаются в феллоген (ива, айва, олеандр).

Газообмен и транспирация в органах, покрытых перидермой, происходят через чечевички (рис. 3.10 ). В местах чечевичек пробковые слои разорваны и чередуются с паренхимными клетками, рыхло соединенными между собой. По межклетникам этой выполняющей ткани циркулируют газы. Феллоген подстилает выполняющую ткань и, по мере ее отмирания, дополняет новыми слоями. С наступлением холодного сезона феллоген откладывает под выполняющей тканью замыкающий слой, состоящий из клеток пробки. Весной этот слой под напором новых клеток разрывается. В замыкающих слоях имеются небольшие межклетники, так что живые ткани ветвей деревьев даже зимой не отграничены наглухо от окружающей среды.

Рис. 3.10. Строение чечевички бузины на поперечном разрезе.

На молодых побегах чечевички выглядят как небольшие бугорки. По мере утолщения ветвей их форма меняется. У березы они растягиваются по окружности ствола и образуют характерный рисунок из черных черточек на белом фоне. У осины чечевички принимают форму ромбов.

У большинства древесных растений на смену гладкой перидерме приходит трещиноватая корка (ритидом) . У сосны это происходит на 8-10-м году, у дуба – в 25-30 лет, у граба – в 50 лет. Лишь у некоторых деревьев (осина, бук, платан, эвкалипт) корка вообще не образуется.

Корка возникает в результате многократного заложения новых прослоек перидермы во все более глубоких слоях коры. Живые клетки, заключенные между этими прослойками, погибают. Таким образом, корка состоит из чередующихся слоев пробки и прочих отмерших тканей коры (рис. 3.11 ).

Рис. 3.11. Корка дуба на поперечном разрезе .

Мертвые ткани корки не могут растягиваться, следуя за утолщением ствола, поэтому на стволе появляются трещины, не доходящие, однако, до глубинных живых тканей. Граница между перидермой и коркой внешне заметна по появлению этих трещин, особенно ясна эта граница у березы, у которой белая береста (перидерма) сменяется черной трещиноватой коркой. Толстая корка надежно предохраняет стволы деревьев от механических повреждений, лесных пожаров, резкой смены температур.

источник

Ткани – это устойчивые, генетически детерминированные комплексы клеток, сходных по происхождению, строению, местоположению и выполняемым функциям. Термин «ткани» был введен в ботанику Н. Грю (1671). Учение о тканях получило название гистология. К истокам гистологии растений следует отнести работу английского естествоиспытателя Р. Гука «Микрография» (1669), в которой впервые было дано описание срезов стебля бузины, укропа, тростника и других растений.

Ткань — группа клеток, которые имеют общее происхождение, выполняют одну или несколько функций и занимают свойственное им положение в организме растения.Органы растения образованы разными тканями.

Ткани делят на простые и сложные. Простыми называют ткани, состоящие из клеток более или менее одинаковых по форме и функциям. Сложные ткани состоят из клеток, разных по форме и функциям, но тесно взаимосвязанных в своих жизненных отправлениях. Пример первых — столбчатая хлоренхима, губчатая хлоренхима, колленхима, вторых — ксилема, флоэма.

Ткани делятся на образовательные (меристема) и постоянные.

Образовательными называются специализированные ткани, клетки которых сохраняют длительную способность к делению, обеспечивая рост растения и отдельных его органов. С учетом положения в теле растения их делят на апикальные (или верхушечные, находятся на апексах корня и побега), интеркалярные (или вставочные, свойственны побегу — стеблю и листьям, находятся в междоузлиях и черешках) и боковые (или латеральные, представлены главным образом в осевых органах — в корне и стебле голосеменных и двудольных покрытосемянных).

Постоянными называют ткани, клетки которых утратили способность к делению (полностью или сохраняют её потенциально) и специализируются на выполнении других функций: защитной, запасающей, механической, проводящей и т. д. С учетом происхождения, преобладающей функции и положения в теле растения постоянные ткани, в свою очередь, делят на покровные, проводящие и основные, начало которым при первичном росте дают соответственно протодерма, прокамбий и основная меристема.

Наряду с анатомо-физиологической существует и онтогенетическая классификация тканей, основанная на их происхождении и времени появления в процессе морфогенеза органа. По этой классификации ткани делят напервичные и вторичные.

Первичные меристемы ведут свое начало от первой клетки нового организма — зиготы, которым свойственна способность к делению. Они первыми формируются при заложении нового организма и обеспечивают его первичный рост. Это — верхушечные и вставочные меристемы. Те постоянные ткани, клетки которых дифференцируются из производных клеток первичной меристемы, называют первичными. К ним относят ткани: первичные покровные, первично проводящие и основные.

Вторичными называют меристемы, которые формируются в вегетативных органах позднее первичных и обеспечивают их вторичный рост. Это боковые меристемы — камбий и феллоген (пробковый камбий). Постоянные ткани, начало которым дали производные клетки вторичной меристемы, называют вторичными. К ним относятся вторичную покровную ткань, вторичные проводящие ткани.

Устройство и назначение составных частей микроскопа.

Предназначена для создания светового потока, который позволяет осветить объект таким образом, чтобы последующие части микроскопа предельно точно выполняли свои функции. Осветительная часть микроскопа проходящего света расположена за объектом под объективом в прямых микроскопах (например, биологические, поляризационные и др.) и перед объектом над объективом винвертированных. Подробнее о видах световых микроскопов.

Осветительная часть конструкции микроскопа включает источник света (лампа и электрический блок питания) и оптико-механическую систему (коллектор, конденсор, полевая и апертурная регулируемые/ирисовые диафрагмы).

Предназначена для воспроизведения объекта в плоскости изображения с требуемым для исследования качеством изображения и увеличения (т. е. для построения такого изображения, которое как можно точнее и во всех деталях воспроизводило бы объект с соответствующим оптике микроскопа разрешением, увеличением, контрастом и цветопередачей). Воспроизводящая часть обеспечивает первую ступень увеличения и расположена после объекта до плоскости изображения микроскопа. Воспроизводящая часть включает объектив и промежуточную оптическую систему.

Современные микроскопы последнего поколения базируются на оптических системах объективов, скорректированных на бесконечность. Это требует дополнительно применения так называемых тубусных систем, которые параллельные пучки света, выходящие из объектива, «собирают» в плоскости изображения микроскопа.

Предназначена для получения реального изображения объекта на сетчатке глаза, фотоплёнке или пластинке, на экране телевизионного или компьютерного монитора с дополнительным увеличением (вторая ступень увеличения). Визуализирующая часть расположена между плоскостью изображения объектива и глазами наблюдателя (цифровой камерой). Визуализирующая часть включает монокулярную, бинокулярную или тринокулярную визуальную насадку с наблюдательной системной (окулярами, которые работают как лупа). Кроме того, к этой части относятся системы дополнительного увеличения (системы оптовара/смены увеличения); проекционные насадки, в том числе дискуссионные для двух и более наблюдателей; рисовальные аппараты; системы анализа и документирования изображения с соответствующими адаптерами для цифровых камер.

Правила работы с микроскопом.

1. Микроскоп поставьте штативом к себе на расстоянии 5-10 см от края стола. Приведите микроскоп в рабочее положение, наклонив верхнюю часть штатива на 45 градусов. В отверстие предметного столика при помощи зеркала направьте свет.

2. Приготовленный препарат поместите на предметный столик и закрепите предметное стекло зажимами.

3. Пользуясь винтом, плавно опустите тубус так, чтобы нижний край объектива оказался на расстоянии 1-2 мм от препарата.

4. В окуляр смотрите одним глазом, не закрывая и не зажмуривая другой. Глядя в окуляр, при помощи винтов медленно поднимайте тубус, пока не появится чёткое изображение объекта исследования.

5. После работы микроскоп приведите в нерабочее положение и уберите в футляр.

Правила ухода за оптическими приборами.

1. Микроскоп от проникновения внутрь пыли должен быть пок­рыт чехлом, лучше полиэтиленовым (или стеклянным колпаком). Микроскоп может храниться в ящике или шкафу. 2. Вынимая прибор из ящика, снимая с полки, а также при переносе с места на место микроскоп необходимо одной рукой держать за штатив, а другой придерживать за основание. 3. Необходимо оберегать микроскоп от механических ударов. 4. Каждый объектив должен быть ввинчен до конца в гнездо револь­верного устройства, и четко зафиксировать в ходе лучей в рабо­чем состоянии микроскопа. 5. Необходимо предохранять фронтальные линзы объективов и конденсора, а также глазные линзы окуляров от соприкосновения с различными реактивами. 6. Нельзя без необходимости снимать бинокулярную насадку и при­касаться к поверхности тубусной линзы. 7. Нельзя касаться любой стеклянной поверхности пальцами рук, поскольку на поверхности остаются жирные следы. Это потребу­ет проведения внеплановой чистки оптики, которая может пов­лечь за собой повреждение просветляющих поверхностей. 8. Категорически запрещается снимать «рубашку» (металлический корпус) объектива и заниматься его разборкой. 9. Во внерабочем состоянии микроскопа объективы должны быть опущены (при чем в ход лучей должен быть установлен объектив малого увеличения). При этом объектив не должен касаться пред­метного столика. 10. Для предохранения попадания пыли внутрь микроскопа (если от­сутствует чехол) окуляры должны быть вставлены в окулярные труб­ки, а объективы ввинчены в гнезда револьверного устройства. Если окуляры отсутствуют, то на окулярные трубки необходимо сделать бумажный чехол, а там где нет объективов — необходимо в оставше­еся гнездо вставить заглушку или заклеить его широким скотчем. 11. Рекомендуется перед началом или в конце работы оценить чис­тоту основных оптических поверхностей объектива, окуляров и конденсора микроскопа и в случае загрязнения немедленно под­вергнуть их чистке. 12. Для продления срока службы ламп в осветителях рекомендует­ся не подвергать их резким перепадам напряжения и перед вклю­чением и выключением переводить регулятор накала нити лампы (реостат) в минимальное положение. Осветители, в которых от­сутствует регулятор накала (реостат), для продления срока служ­бы лампы рекомендуется реже выключать. 13. Раз в полгода необходимо проводить профилактическую чистку и смазку микроскопа представителями сервисной технической службы.

источник

Ткань — группа клеток, структурно и функционально взаимосвязанных друг с другом, сходных по происхождению, строению и выполняющих определенные функции в организме.

Ткани возникли у высших растений в связи с выходом на сушу и наибольшей специализации достигли упокрытосеменных, у которых их выделяют до 80 видов. Важнейшие ткани растений:

Ткани могут быть простыми и сложными. Простые ткани состоят из одного вида клеток (например, колленхима, меристема), а сложные — из различных по строению клеток, выполняющих кроме основных и дополнительные функции (эпидерма, ксилема, флоэма и др.).

Образовательные ткани , или меристемы , являются эмбриональными тканями. Благодаря ним долго сохраняющейся способности к делению (некоторые клетки делятся в течение всей жизни) меристемы участвуют в образовании всех постоянных тканей и тем самым формируют растение, а также определяют его длительный рост.

Клетки образовательной ткани тонкостенные, многогранные, плотно сомкнутые, с густой цитоплазмой, с крупным ядром и очень мелкими вакуолями. Они способны делиться в разных направлениях.

По происхождению меристемы бывают первичные и вторичные. Первичная меристема составляет зародыш семени, а у взрослого растения сохраняется на кончике корней и верхушках побегов, что делает возможным их нарастание в длину. Дальнейшее разрастание корня и стебля по диаметру (вторичный рост) обеспечивается вторичными меристемами — камбием и феллоге-ном. По расположению в теле растения различают верхушечные (апикальные), боковые (латеральные), вставочные (интеркаляр-ные) и раневые (травматические) меристемы.

Покровные ткани располагаются на поверхности всех органов растения. Они выполняют главным образом защитную функцию — защищают растения от механических повреждений, проникновения микроорганизмов, резких колебаний температуры, излишнего испарения и т. п. В зависимости от происхождения различают три группы покровных тканей —эпидермис, перидерму и корку.

Эпидермис (эпидерма, кожица) — первичная покровная ткань, расположенная на поверхности листьев и молодых зеленых побегов (рис. 8.1). Она состоит из одного слоя живых, плотно сомкнутых клеток, не имеющих хлоропластов. Оболочки клеток обычно извилистые, что обусловливает их прочное смыкание. Наружная поверхность клеток этой ткани часто одета кутикулой или восковым налетом, что является дополнительным защитным приспособлением. В эпидерме листьев и зеленых стеблей имеются устьица, которые регулируют транспирацию и газообмен растения.

Перидерма — вторичная покровная ткань стеблей и корней, сменяющая эпидермис у многолетних (реже однолетних) растений (рис. 8.2.). Ее образование связано с деятельностью вторичной меристемы —феллогена (пробкового камбия), клетки которого делятся и дифференцируются в центробежном направлении (наружу) в пробку (феллему), а в центростремительном, (внутрь) — в слой живых паренхимных клеток (феллодерму). Пробка, феллоген и феллодерма составляют перидерму.

Рис. 8.1. Эпидерма листа различных растений: а— хлорофитум; 6 — плющ обыкновенный: в — герань душистая; г — шелковица белая; 1— клетки эпидермы; 2 — замыкающие клетки устьиц; 3 — устьичная щель.

Рис 8.2. Перидерма стебля бузины (а — поперечный разрез побега, б — чечевички): I— выполняющая ткань; 2 — остатки эпидермы; 3 — пробка (феллема); 4 — феллоген; 5 — феллодерма.

Клетки пробки пропитаны жироподобным веществом — суберином —и не пропускают воду и воздух, поэтому содержимое клетки отмирает и она заполняется воздухом. Многослойная пробка образует своеобразный чехол стебля, надежно предохраняющий растение от неблагоприятных воздействий окружающей среды. Для газообмена и транспирации живых тканей, лежащих под пробкой, в последней имеются особые образования — чечевички; это разрывы в пробке, заполненные рыхло расположенными клетками.

Корка образуется у деревьев и кустарников на смену пробке. В более глубоко лежащих тканях коры закладываются новые участки феллогена, формирующие новые слои пробки. Вследствие этого наружные ткани изолируются от центральной части стебля, деформируются и отмирают, На поверхности стебля постепенно образуется комплекс мертвых тканей, состоящий из нескольких слоев пробки и отмерших участков коры. Толстая корка служит более надежной защитой для растения, чем пробка.

Проводящие ткани обеспечивают передвижение воды и растворенных в ней питательных веществ по растению. Различают два вида проводящей ткани — ксилему (древесину) и флоэму (луб).

Ксилема —это главная водопроводящая ткань высших сосудистых растений, обеспечивающая передвижение воды с растворенными в ней минеральными веществами от корней к листьям и другим частям растения (восходящий ток). Она также выполняет опорную функцию. В состав ксилемы входят трахеиды и трахеи (сосуды) (рис. 8.3), древесинная паренхима и механическая ткань.

Трахеиды представляют собой узкие, сильно вытянутые в длину мертвые клетки с заостренными концами и одревесневшими оболочками. Проникновение растворов из одной трахеиды в другую происходит путем фильтрации через поры — углубления, затянутые мембраной. Жидкость по трахеидам протекает медленно, так как поровая мембрана препятствует движению воды. Трахеиды встречаются у всех высших растений, а у большинства хвощей, плаунов, папоротников и голосеменных служат единственным проводящим элементом ксилемы. У покрытосеменных растений наряду с трахеидами имеются сосуды.

Рис 8.3. Элементы ксилемы (а) и флоэмы (6): 1—5 — кольчатая, спиральная, лестничная и пористая (4, 5) трахеи соответственно; 6 — коль чатая и пористая трахеиды; 7 — ситовидная трубка с клеткой-спутницей.

Трахеи (сосуды) —это полые трубки, состоящие из отдельных члеников, расположенных друг над другом. В члениках на поперечных стенках образуются сквозные отверстия — перфорации, или эти стенки полностью разрушаются, благодаря чему скорость тока растворов по сосудам многократно увеличивается. Оболочки сосудов пропитываются лигнином и придают стеблю дополнительную прочность. В зависимости от характера утолщения оболочек различают трахеи кольчатые, спиральные, лестничные и др. (см. рис. 8.3).

Флоэма проводит органические вещества, синтезированные в листьях, ко всем органам растения (нисходящий ток). Как и ксилема, она является сложной тканью и состоит из ситовидных трубок с клетками-спутницами (см. рис. 8.3), паренхимы и механической ткани. Ситовидные трубки образованы живыми клетками, расположенными одна над другой. Их поперечные стенки пронизаны мелкими отверстиями, образующими как бы сито. Клетки ситовидных трубок лишены ядер, но содержат в центральной части цитоплазму, тяжи которой через сквозные отверстия в поперечных перегородках проходят в соседние клетки. Ситовидные трубки, как и сосуды, тянутся по всей длине растения. Клетки-спутницы соединены с члениками ситовидных трубок многочисленными плазмодесмами и, по-видимому, выполняют часть функций, утраченных ситовидными трубками (синтез ферментов, образование АТФ).

Ксилема и флоэма находятся в тесном взаимодействии друг с другом и образуют в органах растения особые комплексные группы — проводящие пучки.

Механические ткани обеспечивают прочность органов растений. Они составляют каркас, поддерживающий все органы растений, противодействуя их излому, сжатию, разрыву. Основными характеристиками строения механических тканей, обеспечивающими их прочность и упругость, являются мощное утолщение и одревеснение их оболочек, тесное смыкание между клетками, отсутствие перфораций в клеточных стенках.

Механические ткани наиболее развиты в стебле, где они представлены лубяными и древесинными волокнами. В корнях механическая ткань сосредоточена в центре органа.

В зависимости от формы клеток, их строения, физиологического состояния и способа утолщения клеточных оболочек различают два вида механической ткани: колленхиму и склеренхиму, (рис. 8.4).

Рис. 8.4. Механические ткани: а — уголковая колленхима; 6— склеренхима; в -— склереиды из плодов алычи: 1 — цитоплазма, 2— утолщенная клеточная стенка, 3 — поровые канальцы.

Колленхима представлена живыми паренхимными клетками с неравномерно утолщенными оболочками, делающими их особенно хорошо приспособленными для укрепления молодых растущих органов. Будучи первичными, клетки колленхимы легко растягиваются и практически не мешают удлинению той части растения, в которой находятся. Обычно колленхима располагается отдельными тяжами или непрерывным цилиндром под эпидермой молодого стебля и черешков листьев, а также окаймляет жилки в листьях двудольных. Иногда колленхима содержит хлоропласты.

Склеренхима состоит из вытянутых клеток с равномерно утолщенными, часто одревесневшими оболочками, содержимое которых отмирает на ранних стадиях. Оболочки склеренхимных клеток обладают высокой прочностью, близкой к прочности стали. Эта ткань широко представлена в вегетативных органах наземных растений и составляет их осевую опору.

Различают два типа склеренхимных клеток: волокна и склереиды. Волокна — это длинные тонкие клетки, обычно собранные в тяжи или пучки (например, лубяные или древесинные волокна). Склереиды — это округлые мертвые клетки с очень толстыми одревесневшими оболочками. Ими образованы семенная кожура, скорлупа орехов, косточки вишни, сливы, абрикоса; они придают мякоти груш характерный крупчатый характер.

Основная ткань , или паренхима , состоит из живых, обычно тонкостенных клеток, которые составляют основу органов (откуда и название ткани). В ней размещены механические, проводящие и другие постоянные ткани. Основная ткань выполняет ряд функций, в связи с чем различают ассимиляционную (хлоренхиму), запасающую, воздухоносную (аэренхиму) и водоносную паренхиму (рис. 8.5).

Рис 8.5. Паренхимные ткани: 1—3 — хлорофиллоносная (столбчатая, губчатая и складчатая соответственно); 4—запасающая (клетки с зернами крахмала); 5 — воздухоносная, или аэренхима.

Клетки ассимиляционной ткани содержат хлоропласты и выполняют функцию фотосинтеза. Основная масса этой ткани сосредоточена в листьях, меньшая часть — в молодых зеленых стеблях.

В клетках запасающей паренхимы откладываются белки, углеводы и другие вещества. Она хорошо развита в стеблях древесных растений, в корнеплодах, клубнях, луковицах, плодах и семенах. У растений пустынных местообитаний (кактусы) и солончаков в стеблях и листьях имеется водоносная паренхима, служащая для накопления воды (например, у крупных экземпляров кактусов из рода карнегия в тканях содержится до 2—3 тыс. л воды). У водных и болотных растений развивается особый тип основной ткани — воздухоносная паренхима, или аэренхима . Клетки аэренхимы образуют крупные воздухоносные межклетники, по которым воздух доставляется к тем частям растения, связь которых с атмосферой затруднена

источник