Меню

2 3 димеркаптопропанол применение в медицине

Тиоловые яды и их противоядия

На производстве и в быту современный человек довольно часто сталкивается с так называемыми тиоловыми ядами — ртутью, свинцом, мышьяком, кадмием, сурьмой и др. Некоторые из этих веществ входят в состав лекарственных препаратов. Всех их объединяет избирательная способность вступать в химическое взаимодействие с сульфгидрильными (-SH), или тиоловыми, группами различных макромолекул организма, в первую очередь — ферментных и других белковых структур, а также некоторых аминокислот. Сульфгидрильным соединениям[108] приписывается исключительная роль в осуществлении биохимических процессов и поддержании жизнедеятельности. Теперь известно более 100 ферментов, активность которых может тормозиться при блокировании в их молекулах SH-групп.[109] С веществами, содержащими сульфгидрильные группы, связано проведение нервного импульса, тканевое дыхание, мышечное сокращение, проницаемость клеточных мембран и другие важнейшие функции. Вот почему избирательное сродство ядовитых соединений к SH-группам приводит к блокированию (нарушению) течения ряда биохимических процессов, что и лежит в основе развития соответствующих отравлений.

Яды — блокаторы сульфгидрильных групп биомолекул

Ртуть. В чистом виде применяется в производстве некоторых медицинских и других препаратов, взрывчатых веществ (гремучая ртуть), ядохимикатов (гранозан), а также для заполнения термометров, барометров и других измерительных приборов. Промышленное значение имеют высокотоксичные неорганические соединения ртути, в частности сулема (HgCl2), из которой получают другие ртутные соединения и которая применяется при травлении стали. Сулема вызывает смертельные отравления при приеме внутрь в количестве 0,2–0,3 г. Пары ртути, пыль ее соединений, проникая в организм, поражают желудочно-кишечный тракт, почки, нервную систему с характерным развитием при тяжелых интоксикациях психических и двигательных расстройств. Ртуть и ее соединения постепенно выводятся из организма (элиминируются) почками и железами внешней секреции, в том числе молочными. Оценивая динамику выделения ртути, можно, во-первых, судить о течении интоксикации,[110] а во-вторых, — об эффективности проводимого лечения.

Свинец. Достаточно назвать производство аккумуляторов, полиграфическое дело, изготовление свинцовых красок, эмали, глазури, чтобы представить, насколько реальны вредности, связанные со свинцом. Источником бытовых отравлений, к примеру, могут стать пища и вода, длительно хранившиеся в посуде, покрытой свинцовой глазурью. Тяжелое отравление возникает при приеме внутрь от 2 до 3 г солей свинца, в частности ацетата. Проникший в организм свинец быстро обнаруживается почти во всех органах и тканях, ко основная его часть фиксируется в эритроцитах и костях. В наибольшей степени свинец поражает нервную систему, кроветворение, желудочно-кишечный тракт, печень. Особенно характерны свинцовые полиневриты и параличи, анемия, схваткообразные боли в животе («свинцовая колика»), спазм кровеносных сосудов. Элиминация свинца осуществляется, подобно ртути, главным образом через почки и кишечник.

Мышьяк. Соединения мышьяка применяются в стекольной, красильной, кожевенной, фармацевтической и других отраслях промышленности. Чистый металлический мышьяк малотоксичен, но его окислы и соли — сильные яды; особенно ядовит мышьяковистый ангидрид, или белый мышьяк (As2O3), который вызывает смертельное отравление в дозе 60–70 мг. Чаще всего соединения мышьяка проникают в организм в виде пыли и с зараженной пищей и водой. Они могут длительно фиксироваться в костях, печени, волосах,[111] коже. Мышьяковая интоксикация в основном проявляется нарастающим снижением кровяного давления, повышением проницаемости стенок сосудов для форменных элементов крови, различными признаками поражения центральной нервной системы вплоть до развития судорожно-паралитического синдрома, а также резкими расстройствами обменных процессов.

Кадмий. Чистый кадмий, его соли и кислоты широко применяются в электроплавильном, аккумуляторном, электролитическом производстве, при изготовлении красок, люминофоров, а также в ядерных энергетических установках как поглотитель нейтронов. 50–60 мг кадмия при приеме внутрь вызывают смертельное отравление. Особо токсичны CdO и CdSO4, которые, поступая в организм в виде паров, дыма или пыли, поражают органы дыхания (судорожный кашель, одышка, отек легких), желудочно-кишечный тракт (рвота, понос), печень и почки. При этом нарушается фосфорно-кальциевый и белковый обмен, что, в частности, снижает прочность костей и приводит к выведению белков плазмы через почки (протеинурия).

Сурьма. В чистом виде применяется при изготовлении различных сплавов. Окислы сурьмы используются для изготовления огнестойких текстильных материалов, огнеупорных красок, эмали, керамики, а различные ее соли (сульфиты, хлориды) — для окрашивания металлических изделий, вулканизации каучука, производства спичек, в пиротехнике. При обработке кислотами металлов, содержащих сурьму, выделяется ядовитый газ — стибин (SbH3). Сурьма и ее соединения поступают в организм главным образом через органы дыхания, они могут длительно задерживаться в печени, коже, волосах. Острое отравление проявляется сильным раздражением слизистых оболочек глаз и верхних дыхательных путей, может наблюдаться поражение желудочно-кишечного тракта, центральной нервной системы, печени, почек. Соединения трехвалентной сурьмы, в первую очередь стибин, вызывают поражение крови (анемия), желтуху.

Надо отметить, что одним из источников опасного воздействия названных и других ядовитых металлов на организм человека является все возрастающее загрязнение водоемов промышленными сточными водами. В одном из специальных отчетов Всемирной организации здравоохранения указывается на постоянно увеличивающееся содержание в реках и озерах таких особо ядовитых химических элементов, как мышьяк, кадмий, хром, свинец, ртуть, селен, ванадий. Так, например, одна из наиболее мощных рек Западной Европы — Рейн, протекающая по территории шести государств, давно уже загрязнена, вода ее мало пригодна для питья и хозяйственных целей, а большинство городов, расположенных на берегах этой реки, снабжается подрусловыми водами.[112] Это же можно сказать о Великих озерах и реке Миссисипи в США и о многих других водоемах. Но, пожалуй, в наибольшей степени от загрязнения водоемов сточными водами страдают жители Японии, где экономическая плотность, т. е. отношение выпуска промышленной продукции к площади удобной земли, в 10–12 раз превосходит аналогичный показатель других высокоразвитых стран. В этой стране, в частности, были отмечены массовые ртутные отравления из-за употребления в пищу зараженной рыбы (залив Минамата), а также тяжелые поражения нескольких сотен людей кадмием, который проник в почву и воду (бассейн р. Джинцу) из расположенных поблизости плавилен и шахт.[113] Здесь уместно вспомнить о громадных количествах токсичных веществ, которые проникают в Мировой океан из атмосферы. Подсчеты показывают, что на его поверхность выпадает, в частности, ежегодно до 200 тыс. тонн свинца и 5 тыс. тонн ртути. Это, естественно, приводит к неблагоприятному воздействию на животные и растительные морские организмы. Так, например, в прибрежных водах Скандинавских стран отмечено значительное увеличение содержания ртути (до 1 мг на 1 кг биомассы), что сделало непригодными к употреблению многие виды рыб.[114] Аналогичная ситуация складывается в заливах и морях, омывающих Японские острова, США и другие промышленно развитые страны.

Механизмы действия тиоловых ядов

Каков же общий механизм взаимодействия ядов с сульфгидрильными соединениями? Прежде всего надо отметить, что в результате реакции ионов металлов с SH-группами образуются слабо диссоциирующие и, как правило, нерастворимые соединения — меркаптиды. При этом одновалентные металлы реагируют по такой общей схеме:

Если металлический ион двухвалентный, то он блокирует одномоментно две SH-группы:

Помимо этого основного способа ингибирования сульфгидрильные группы белков и аминокислот могут легко окисляться. Это чаще всего происходит при их контакте с различными акцепторами электронов (например, с перекисями, хинонами, йодом) и приводит к образованию дисульфидов — веществ типа R-S-S-R. Инактивация сульфгидрильных групп может также вызываться рядом органических галоидных соединений посредством необратимого замещения водорода в радикале SH на углеродный радикал с образованием прочной сероуглеродной (-S-С-) связи. Различные тяжелые металлы обладают разным химическим сродством к сульфгидрильным группам. Сильнее всего оно выражено у ртути, трехвалентного мышьяка, серебра, а также у свинца и трехвалентной сурьмы.[115]

В связи с особой токсикологической значимостью реакции образования меркантидов интересно рассмотреть механизм токсического действия люизита (хлорвинилди-хлорарсина) — весьма ядовитого производного трехвалентного мышьяка, синтезированного в Германии и в США в конце первой мировой войны. В последующие годы этот яд военной химии продолжал вызывать к себе интерес токсикологов из-за возможности использования его в качестве отравляющего вещества. Вот почему во время второй мировой войны в некоторых странах велись поиски специфического противолюизитного препарата. Такой антидот был создан в Англии в середине 40-х годов в лаборатории Питерса.[116] Успешному испытанию препарата предшествовало раскрытие механизма действия люизита. Оказалось, что этот яд наиболее выраженно тормозит углеводный обмен, причем особенно уязвимыми являются реакции окислительного декарбоксилирования одного из конечных продуктов распада Сахаров в организме — пировиноградной кислоты. Данное звено обмена катализируется пируватоксидазной группой ферментов, важнейшим компонентом (кофактором) которых является дигидролипоевая кислота. При взаимодействии люизита с этим веществом образуется циклический меркаптид:

Можно думать, что блокирование дигидролипоевой кислоты облегчается пространственным соответствием SH-групп в ее молекуле и атомов хлора при мышьяке люизита.

Основываясь на таком механизме действия люизита, естественно предположить, что образование подобного комплекса «яд-рецептор» произойдет и тогда, когда вместо дигидролипоевой кислоты в реакции будет участвовать другой дитиол, т. е. соединение, содержащее 2 близко расположенные SH-группы, Именно из этого исходили Питерс и его сотрудники, когда вели поиск противолюизитного препарата. За его основу они взяли трехатомный спирт глицерин, в молекулу которого вместо двух рядом расположенных гидроксилов ввели 2 тиоловые группы. Так был синтезирован 2,3-димеркаптопропанол, получивший название британского антилюизита (БАЛ):[117]

Нетрудно представить, что если в реакции с люизитом вместо дигидролиноевой кислоты будет участвовать 2,3-димеркаyтопропанол, то обе его SH-группы вступят в реакцию образования циклического меркантида. Оказалось, что последний является более прочным соединением, чем комплекс «яд-фермент». Иными словами, в итоге конкуренции за связь с ядом естественного и искусственного донатора тиоловых групп второй из них оказывается более эффективным средством детоксикации люизита. Но если бы действие антидота реализовалось только по такой схеме, то оно проявлялось бы при наличии в организме лишь свободных молекул яда. На самом деле БАЛ способен разрушать комплекс «яд-рецептор» и тем реактивировать дигидролиноевую кислоту:

Нарастающее образование недиссоциирующего и малотоксичного комплексного соединения «яд-антидот» сдвигает установившееся равновесие между ядом и ферментом в сторону введенного антидота. К тому же необходимо учитывать, что связанный с антидотом яд постепенно выводится из организма через кишечник и почки. Это ценное свойство димеркаптопропанола, которое роднит его с реактиваторама холинэстераз, позволяет бороться с интоксикациями в выраженных их стадиях. Но значение его состоит не только и не столько в антидотных свойствах по отношению к люизиту, интоксикации которым весьма проблематичны. Главное — это способность димеркаптопропанола обезвреживать многие другие тиоловые яды, с которыми контактирует современный человек. Вот почему приходится считаться и с некоторыми отрицательными сторонами БАЛа как лечебного препарата. Во-первых, небольшая широта терапевтического действия[118] не позволяет его использовать в больших дозах (сотые доли грамма — лечебная доза, десятые доли грамма — токсическая). Во-вторых, плохая растворимость в воде заставляет вводить антидот в специальных масляных растворах, что затрудняет всасывание его в кровь и существенно замедляет лечебное действие. Эти обстоятельства, а также расширяющиеся возможности контакта многих людей с тиоловымя веществами на производстве и в повседневной жизни вызвали необходимость усовершенствования британского антилюизита.

Читайте также:  Аналог спирали мультилоад ку 375

В начале 50-х годов киевскими токсикологами и химиками под руководством академика АМН СССР А. И. Черкеса и профессора В. Е. Петрунькина был синтезирован и с успехом испытан отечественный препарат унитиол. По своему химическому строению он отличается от БАЛа только тем, что его гидроксил замещен на радикал S03Na и молекула подверглась гидратации. Следовательно, унитиол — это 2,3-димеркантопропансульфонат натрия:

Но именно это небольшое изменение структуры сделало унитиол хорошо растворимым в воде и одновременно значительно усилило его антидотную активность в сравнении с димеркаптопропанолом.[119] Унитиол прочно вошел в арсенал антидотно-лечебных средств, и теперь уже накоплен большой опыт успешного его использования при отравлениях различными соединениями мышьяка, ртути, свинца, кадмия, никеля, хрома, кобальта, ряда радиоактивных элементов.[120]Вот как, например, реагирует унитиол с сулемой:

В известной мере эта реакция может считаться общей схемой детоксикации дитиолами солей и других ядовитых соединений двухвалентных металлов (например, окислов). Такого типа комплексы образуются при взаимодействии эквивалентных количеств унитиола и ионов металла. Однако ртуть, кадмий и другие элементы могут давать и укрупненные комплексы, если соединение «унитиол-металл» вступает в реакцию с дополнительной молекулой антидота:

Весьма эффективным оказалось применение унитиола при интоксикации ртутьорганическими ядохимикатами, в частности гранозаном, действующее начало которого — этилмеркурхлорид — содержит до 75% ртути. Так, в литературе сообщалось об успешном лечении 6 лиц, отравившихся хлебом из зерна, протравленного этим фунгицидом. В то же время 3 человека с подобной интоксикацией, не лечившихся унитиолом, погибли.[121] Частым источником гранозановых интоксикаций (особенно у детей) становится употребление протравленных семян подсолнечника. Гранозан очень медленно выводится из организма, что, в частности, создает возможности заражения грудных детей через молоко матери.

Рис. 11. Результаты лечения унитиолом кроликов (% выживших животных), отравленных мышьяком, ртутью и кадмием в дозах, дающих 80% смертности у полеченных животных (Бравер-Чернобульская, Белоножко, 1959)

В разработку антидотных методов лечения и профилактики интоксикаций ртутьорганическими соединениями внесли вклад труды профессора С. И. Ашбеля (г. Горький) и его сотрудников. Так, имя был успешно применен унитиол в виде аэрозоля с помощью оригинальных аэрозольингаляционных установок. Авторы обосновывают такой метод антидотной терапии тем, что вследствие поступления ртутьорганических ядохимикатов в организм через легкие (при их производстве и применении) последние становятся основным депо этого яда.[122] Вдыхание унитиолового аэрозоля показано и при выполнении работы в условиях возможного воздействия этих веществ на организм (т. е. профилактически), тем более при малейшем подозрении на начинающуюся интоксикацию. Вообще ингаляционный метод введения антидота в организм находит применение также и для лечения и профилактики интоксикаций другими ядами. Эффективность унитиола можно еще проиллюстрировать экспериментальными данными (рис. 11).

И все же, несмотря на многие положительные свойства, унитиол как лечебный препарат не свободен и от недостатков. Многолетний опыт его применения свидетельствует, что при передозировке или повышенной чувствительности к нему организма могут возникнуть головная боль, снижение кровяного давления, появиться сыпь. Кроме того, длительное использование унитиола приводит к усиленному выведению из организма таких микроэлементов, как медь и марганец. Вот почему вполне оправданными стали поиски дитиоловых антидотных средств, которые бы были лишены нежелательного побочного действия.

Димеркаптоянтарная кислота (сукцимер)

Одним из таких препаратов оказалась димеркапто-янтарная кислота (ДМЯ): , синтезированная В. Л. Ниренбург на кафедре органической химии Уральского политехнического института. То, что ДМЯ проявляет четко выраженное защитное действие при отравлении животных соединениями мышьяка и ртути, было впервые показано И. Е. Оконишниковой (1962 г.). Наличие двух рядом расположенных SH-групп приводит при ее взаимодействии с тиоловыми ядами к образованию такого же нетоксичного комплекса, какой формировался при использовании унитиола и других подобных антидотов. В последующем антидотные свойства ДМЯ были подтверждены серией убедительных экспериментов, которые, в частности, показали, что она является надежным противоядием при отравлении животных мышьяксодержащими веществами, в том числе лекарственными (новар-сенолом и др.).[123] Так, если ДМЯ вводилась не позднее чем через 2 ч после отравления абсолютно смертельными дозами мышьяковых ядов, то выживало от 80 до 100% подопытных животных. Если ее вводили в организм за 15 мин до отравления, то выживало 100% животных. ДМЯ имеет большую терапевтическую широту и лишена какого-либо нежелательного побочного действия. При ее применении отмечена большая скорость выведения мышьяка из организма отравленных животных, чем под влиянием унитиола. Как положительное свойство ДМЯ следует отметить, что она включает активный метаболит — янтарную кислоту, активирующую ряд ферментных процессов при интоксикации тиоловыми ядами. Все это позволило рекомендовать ДМЯ в качестве антидота, который в лечебной практике получил новое название — сукцимер.[124]

Как дитиоловый антидот приобретает значение липоевая (тиоктовак) кислота — окисленная форма дигидролипоевой кислоты:

Впервые она была выделена из печени животных в 1951 г. в лаборатории американского исследователя Рида, где в дальнейшем определили ее химическую структуру и синтезировали. В организме (ежедневная потребность в ней — 1–2 мг) липоевая кислота ферментативно быстро восстанавливается в дигидролипоевую кислоту с 2 активными сульфгидрильными группами, обладающими выраженными редуцирующими свойствами. Эксперименты на животных и лечебная практика свидетельствуют об определенной ее эффективности при отравлениях соединениями мышьяка, сурьмы и некоторыми другими подобными ядами.[125] Следует отметить значимость ее как ценного лекарственного препарата при ряде патологических состояний, связанных с нарушением обмена веществ, прежде всего углеводного и жирового, а также при заболеваниях печени. Постоянно присутствуя в крови и тканях организма и являясь «точкой приложения» тиоловых ядов, липоевая кислота на фоне интоксикации может проявлять себя, с одной стороны, как антидот прямого и реактивирующего действия, а с другой (и это важно подчеркнуть) — как заместительный антидот.

Остановимся еще на одном антидотном механизме, связанном с использованием сульфгидрильных соединений. Речь идет о специфическом лечении отравлений бромистым метилом (CH3Br) — одним из широко используемых средств борьбы с вредителями растений, сорняками и грызунами. Будучи очень токсичным для человека и теплокровных животных ядом судорожно-паралитического действия, — СH3Вr метилирует различные функциональные группы белков, в первую очередь -SH, -СООН, -NН2. Попытки использовать БАЛ, унитиол и другие вещества для лечения отравлений бромистым метилом оказались безуспешными. Единственным эффективным препаратом,; как было показано в опытах на кроликах и крысах, оказался важный биохимический компонент жизнедеятельности — аминокислота цистеин[126] (). При этом антидотные свойcтва цистеина связываются с наличием в его молекуле всех тех функциональных групп, которые угнетаются ядом. Эти химические радикалы препарата конкурентно взаимодействуют с активно метилирующим бромистым метилом. Иными словами, в организме цистеин берет на себя метальную группу СН3Вr, тем самым предохраняя от повреждения белковые структуры. Доступность и малая токсичность цистеина дали основание рекомендовать его в качестве антидота для практического применения.[127]

Комплексоны и их антидотное действие

В последние десятилетия наблюдается все возрастающий интерес токсикологов к особому классу химических соединений, получивших название комплексонов.[128] Эти вещества отличаются способностью образовывать прочные неионизирующие водорастворимые комплексы со многими неорганическими катионами, в том числе с тяжелыми металлами. Проникновение комплексонов в самые разнообразные отрасли производства, науки, медицины началось, по-видимому, в конце 30-х годов, когда этилен-диаминтетрауксусная кислота (ЭДТА) была запатентована германской фирмой «И. Г. Фарбениндустри» в качестве средства смягчения воды. Широкие исследования с использованием этих веществ начались у нас и за границей примерно с конца 40-х годов, когда стало ясно, что при их помощи можно ускорить выведение из организма токсичных металлов. Молекулы комплексонов практически не подвергаются расщеплению или какому-либо изменению в биологической среде, что является их важной фармакологической особенностью.

В качестве антидотов среди комплексонов наибольшее распространение получили различные соли ЭДТА, которая имеет такое химическое строение:

Как видно из приведенной формулы, ЭДТА — амино-поликарбоновая (четырехосновная) кислота, она способна образовывать прочные комплексные соединения со многими металлами. Однако сильнее это свойство проявляется у ее солей — натриевых, кальциевых, кобальтовых и др. Вот как протекает взаимодействие одного из наиболее распространенных комплексонов — тетацина (CaNa2ЭДТА) с ионами свинца:

Из схемы следует, что в образовавшемся хелатном комплексе, как и в исходной соли СаNа2ЭДТА, металл (в данном случае Рb) связан не только валентными связями с карбоксильными группами, но и координационно — с атомами азота. Связь эта является прочной, она лишает яд присущей ему токсичности. СаNа2ЭДТА хорошо растворим в воде и потому легко выводится из организма через почки. Со времени первого лечебного использования тетацина при свинцовой интоксикации (1952 г.) этот комплексов нашел широкое применение в клинике профессиональных заболеваний[129] и продолжает оставаться незаменимым антидотом свинца и по сей день. Совершенно идентично тетацин обменивает ион кальция на ионы других двухвалентных металлов: ртути, кобальта, кадмия, бария. Он оказывает антидотное действие при введении в организм в виде 5%-ного или 10%-ного раствора, основой которого является физиологический раствор хлорида натрия или глюкозы, причем максимальная эффективная доза составляет 2 г препарата в сутки. Этот состав может использоваться и для промывания желудка отравленных с целью связывания яда, еще не всосавшегося в кровь. Очень эффективно применение СаNа2ЭДТА посредством аэроингаляция, когда антидот быстро всасывается и долго циркулирует в крови. Под влиянием аэрозоля CaNa2ЭДTA у отравленных отмечалось значительное усиление экскреции свинца почками, что свидетельствует о мобилизации металла из тканевых депо и переходе его в плазму крови.[130] Надо, однако, отметить, что в процессе комплексонотерапии возможно и некоторое усиление симптомов интоксикации, по-видимому, из-за увеличения обратного всасывания металла из пищеварительного тракта, куда он переходит через желчь и стенку кишечника из плазмы.

Обращает внимание структурное сходство разбираемой реакции с реакциями связывания яда молекулами дитиолов: в обоих случаях образуется замкнутая связь хелатного типа. Вот почему вполне оправдано причисление унитиола и других дитиолов к комплексообразующим антидотам. Но в отличие от соединения «яд-ЭДТА» соединение «яд-дитиол» мало или почти нерастворимо в воде, что уменьшает скорость его выведения из организма.

Помимо CaNa2ЭДTA практическое значение в качестве противоядий имеют и другие соли этилендиаминтетра-ацетата: СаЭДТА, Na2ЭДTA (трилон Б), Со2ЭДТА, а также производное диэтилентриаминпентоуксусной кислоты — СаNа3ДТПА (пентацин).[131] Так, при отравлении кальцием и его соединениями — СаО (негашеная известь), Са(ОН)2 (гашеная известь), СаС2 (карбид кальция) — показано применение трилона Б, молекулы которого присоединяя ионы Са 2+ , превращаются в тетацин:

Читайте также:  Можно ли детям давать энтерофурил в капсулах

Данные литературы последних 10–15 лет свидетельствуют о значительной антидотной эффективности при свинцовых отравлениях нового комплексообразующего вещества — D-пеницилламина (D-ПАМ), который представляет собою диметилцистеин, т. е. аминокислоту следующей химической структуры:

Защитное действие D-ПАМ, по-видимому, в первую очередь обусловливается наличием трех близко расположенных функционально активных групп (сульфгидрильной, аминной, карбоксильной). Оказалось, что D-ПАМ особенно хорошо проявляет себя при маловыраженных, легких формах отравлений, когда необходим длительный прием препарата внутрь для элиминации металла из организма. Хорошая переносимость отечественного препарата D-ПАМ подтверждается многими авторами. D-ПАМ рекомендуется в течение нескольких педель принимать перорально также после того, когда отравленный будет выведен из тяжелого состояния с помощью инъекций солей ЭДТА. Сравнительный анализ показал значительно более выраженную элиминационную эффективности D-ПАМ в сопоставлении с СаNа2ЭДТА (рис. 12).

Рис. 12. Выведение свинца из организма при приеме тетацинкальция в дозе 2 г в сутки (пунктирная линия) и D-пеницилламина в дозе 0,9 г в сутки (сплошная линии) (Архипоза и др., 1875)

Высокой степенью комплексообразования отличается также фитин — сложный органический препарат, представляющий собой смесь кальциевых и магниевых солей инозитфосфорных кислот. Его получают из обезжиренных конопляных жмыхов. По данным профессора Ж. И. Абрамовой,[132] фитин полностью защищает животных, отравленных смертельными дозами свинца. При этом он в отличие от солей ЭДТА выводит яд преимущественно через желудочно-кишечный тракт, а не через ночки. Фитин — совершенно безвредный лечебный препарат с дневной дозой около 1,5 г; он может быть рекомендован и при отравлении другими ядовитыми металлами, причем для полного выведения яда из организма допускается назначение такой дозы фитина в течение нескольких недель.

Особенности механизма комплексообразования. Комплексоны и биоэлементы

Антидотное действие комплексонов зависит от прочности образующегося металлокомплекса, что в свою очередь определяется величиной константы устойчивости (или равновесия) соответствующих реакций хелатообразования. Исходя из этой величины, можно установить степень химического сродства отдельных металлов к комплексонам, а значит, и предвидеть возможность связывания ими различных металлов. Так, по возрастающей степени устойчивости комплекса «металл-ЭДТА» металлы располагаются в таком порядке: Sr, Mg, Ca, Fe 2+ , Mn, Co, Zn, Cd, Pb, Cu, Hg, Ni. Отсюда следует, что, например, кальциевые соли ЭДТА являются эффективными антидотами при отравлении свинцом и кадмием, так как эти металлы вытесняют из комплексона кальций, имеющий меньшую константу устойчивости с ЭДТА. По той же причине выведение из организма стронция и магния не будет ускоряться кальциевыми солями ЭДТА, а марганца и железа — кобальтовой ее солью. В то же время надо учитывать, что эффективность комплексонов в отношении токсичных металлов зависит не только от прочности образуемого комплекса «металл-хелат» и константы вытеснения металлом кальция, но и от прочности связи извлекаемого металла с биокомплексами организма.[133]

Иногда длительное поступление в организм малых количеств ядовитых металлов приводит к фиксированию их различными внутренними органами и тканями, вследствие чего их концентрация в крови и моче существенно не повышена. И если имеется подозрение на интоксикацию, то пациенту дают один из комплексонов, что резко увеличивает выведение яда с мочой и указывает на его присутствие в организме. При этом по мере связывания антидотом свободно циркулирующего металла последний постепенно переходит из тканевых депо в плазму крови и затем через почки в мочу. Иными словами, процесс комплексообразования приводит к нарушению установившегося равновесия между ионизированным металлом плазмы и металлом, содержащимся, например, в эритроцитах, а также в печени, селезенке, костной ткани и др.

Небезынтересно в связи с этим, что некоторые комплексоны, например тетацин, используются при обследовании яиц, ранее подвергавшихся на производстве воздействию свинца. После длительного перерыва в работе диагностическим показателем наличия у них свинцового депо в организме является выведение металла с мочой (0,35 мг в сутки и более) в результате однократной инъекции комплексона.

Так как комплексоны связывают и ускоряют выведение из организма многих металлов, то по отношению к ним не остаются безучастными и биоэлементы, находящиеся в свободном состоянии (Na, К, Са и др.) или входящие в состав жизненно важных металлопротеидов. Вот почему введение в организм комплексонов не может не повлиять на течение обменных процессов и на действие ряда чужеродных веществ, поскольку их биотрансформация определяется функцией ферментов, молекулы которых включают тот или иной металл. Так, при обследовании 71 человека, соприкасавшегося во время работы со свинцом или ртутью и получавшего тетацин или унитиол с лечебной и диагностической целью, было установлено, что при длительном применении эти препараты резко увеличивают выведение из организма меди и марганца через почки. Эти данные привели к выводу о необходимости дополнительного введения названных жизненно важных микроэлементов с целью восполнения их потерь.[134] С другой стороны, эксперименты свидетельствуют, что некоторое аминополикарбоновые комплексоны (тетацин, пентацин) активируют такие металлопротеидные ферменты, как цитохромоксидаза, каталаза и др. Это связывается со способностью комплексонов изменять валентность атомов железа и других микроэлементов.[135] Между тем еще в 1956 г. было показано,[136] что животных можно защитить от смертельной дозы токсина газовой гангрены, вводя им растворы Na2ЭДТA и СаЭДТА. Оказалось, что этот микробный яд есть не что иное, как фермент лецитиназа,[137] который активируется ионами Zn 2+ и Со 2+ . Поэтому, связывая эти ионы с помощью комплексонов, удается резко снизить действие токсина.

Вообще надо отметить широкий диапазон возможного влияния хелатообразующих соединений на различные биохимические процессы и физиологические функции. В дальнейшем мы еще сможем проиллюстрировать это примерами из области токсикологии. Теперь же, в заключение данной главы, вкратце коснемся одного аспекта практического применения комплексонов. Поскольку соли ЭДТА и других аминополикарбоновых кислот не разлагаются в организме, характеризуются большой терапевтической широтой и быстро выводятся почками, отдельные токсикологи рекомендуют применять их и для предупреждения некоторых профессиональных отравлений (например, свинцовых, марганцевых, ртутных). В производственных условиях это возможно посредством вдыхания аэрозолей или приема внутрь таблеток, содержащих антидот. Однако с учетом вероятности развития побочных явлений (нарушение функции почек, связывание кальция сыворотки крови и многих микроэлементов, изменение активности некоторых ферментов и др.) ряд авторов отрицательно относится к профилактическому применению комплексонов. В связи с этим в нескольких лабораториях проводились изыскания таких профилактических средств, которые бы при длительном повседневном применении (в том числе и непосредственно на производстве) не вызывали нежелательных сдвигов в состоянии организма и в то же время обладали выраженным защитным действием. Эти свойства выявлены у пектинов — полимерных веществ пищевого происхождения, которые построены в виде цепей со звеньями следующего строения:

Таким образом, каждое из этих звеньев включает 2 молекулы галактуроновых кислот, соединенных гидролизующимися связями. В литературе особенно подчеркивается антидотное значение их карбоксильных групп, которые способны присоединять катионы многих металлов с образованием пектинатов. Кроме того, следует иметь в виду, что пектины — коллоидные вещества с выраженными сорбционными свойствами.[138] Эти физические особенности, по-видимому, в немалой степени определяют их защитное действие при интоксикациях. Теперь уже накопилось достаточно экспериментальных данных, бесспорно свидетельствующих о профилактическом действии пектина при отравлениях тяжелыми металлами. Особенно четко такой эффект проявляется при проникновении в организм свинца, всасывание которого под влиянием пектинов резко тормозится. Для работающих в контакте с этим металлом О. Г. Архиповой и соавторами была разработана инструкция, согласно которой пектин вводится в организм в виде специально изготовленного мармелада с 5–8%-ным содержанием препарата (по 125 г ежедневно в течение 2–5,5 мес). При этом одновременно отмечалось увеличение выведения яда главным образом через желудочно-кишечный тракт. Каких-либо побочных явлений и осложнений длительный прием пектина не вызывал.[139]

Таким образом, в настоящее время можно говорить об определенных успехах экспериментальной и клинической токсикологии в изыскании и применении лекарственных средств антидотного действия, пригодных как для лечения, так и для предупреждения отравлений тиоловыми ядами. Практическое использование этих средств оказалось особенно результативным при профессиональных интоксикациях соединениями мышьяка, свинца, ртути.

Саноцкий И. В. Предупреждение вредных химических воздействий на человека — комплексная задача медицины, экологии, химии и техники. — ЖВХО, 1974, № 2, с. 125–142.

(Лужников Е. А., Дагаее В. Н., Фарсов Н. Н. Основы реаниматологии при острых отравлениях. М.: Медицина, 1977.

источник

МЕРКАПТАНЫ (современное название — тиолы) — класс органических соединений, содержащих при атоме углерода группу —SH (сульфгидрильную, или меркаптогруппу). Группировки М. содержат белки (в т. ч. многие ферменты), включающие остатки меркаптоаминокислоты цистеина (см.), так наз. тиоловые кофакторы — глутатион (см.), КоА, дигидролипоевая к-та и т. д., и другие соединения. Нек-рые полифункциональные М. находят применение в медицине. 1,2-Дитиолы — 2,3-димеркаптопропанол, унитиол (см.), димеркаптоянтарная к-та используются как антидоты при отравлениях мышьяком, ртутью и другими тяжелыми металлами и при других интоксикациях, а также при аритмиях сердца, гепатоцеребральной дистрофии, склеродермии и других заболеваниях, сопровождающихся нарушениями обмена коллагена и т. д. Алифатические меркаптоамины (2-меркаптоэтиламин, 2-меркаптоиропиламин) являются признанными радио защитными агентами. Их радиозащитное действие связывают с уменьшением выхода хромосомных аберраций в лейкоцитах лиц, подвергшихся облучению, и с увеличением в их тканях количества индуцированных SH-групп и восстановленного глутатиона. Применение в клинике в качестве лекарственных средств нашли гетероциклические М. (6-меркаптопурин, 8-меркаптоаденин, 1-метил-2-меркаптоимидазол). Нек-рые М. используют также в качестве пестицидов, в производстве полимеров и в других областях народного хозяйства.

М. широко распространены в природе, многие М. имеют растительное или животное происхождение (пропантиол содержится в луке, бутантиол — в выделении защитных желез скунса и т. п.), в очень небольших количествах М. содержатся в пищевых продуктах (напр., CH3SH в сыре, молоке, кофе и др.).

По строению и нек-рым свойствам М. аналогичны спиртам и называются иногда тиоспиртами. Названия М. образуются по типу названий спиртов (C2H5SH — этантиол, ()— 2-пропантиол, HSCH2CH2CH2SH —1,3-пропандитиол); для полифункциональных М. употребляется приставка «меркапто-» (напр., HSCH2СН2ОН — 2-меркаптоэтанол).

Низкомолекулярные алифатические М. представляют собой жидкости, температура кипения к-рых значительно ниже температуры кипения соответствующих спиртов, с удлинением углеродной цепи эта разница сглаживается и высшие алкантиолы являются уже низкоплавкими твердыми веществами. Растворимость М. в воде гораздо ниже, чем у соответствующих спиртов (для C2H5SH ⩽ 1 % при 20°). Характерное свойство М. (особенно низших алифатических М.)— сильный неприятный запах, ощутимый даже в ничтожных концентрациях (для CH3SH такая концентрация равна 2*10 -9 мг/л воздуха), поэтому М. (напр., изоамилтиол) используют как одоранты газа. Низкомолекулярные М. могут быть получены взаимодействием галоидных алкилов с NaSH.

Читайте также:  Линкомицин таблетки инструкция по применению таблетки

М.— очень слабые к-ты, при действии щелочей образуют легко гидролизующиеся соли (тиоляты, меркаптиды). Для М. характерно образование трудно растворимых в воде меркаптидов тяжелых металлов (особенно ртути); образование таких меркаптидов, блокирующее SH-группы белков (ферментов), происходит при отравлениях соединениями тяжелых металлов. М.— весьма реакционно-способные соединения. Легко происходящее окисление М. в дисульфиды играет важную роль в химии SH-групп в биол., в частности в ферментативных процессах (см. Сульфгидрильные группы). Обменную реакцию М. с дисульфидами используют для предотвращения аутоокисления SH-групп в белках (с помощью меркаптоэтанола, дитиотректола). М. легко алкилируются и ацилируются по атому серы до сульфидов и тиоацильных соединений соответственно; в биохим, процессах в организме животных и человека тиоациловые эфиры служат переносчиками ацила (см. Коферменты). С альдегидами и кетонами М. образуют тиоацетали и тиокетали. Реакция присоединения М. к активированной двойной связи используется, напр., при исследовании SH-белков с помощью N-этилмалеимида.

Для обнаружения М. служат цветные реакции с нитропруссидом натрия, ионами Pb 2+ и Hg 2+ , азотистой к-той, изатином и серной к-той и т. п. Количество М. определяют методами йодо-, аргенто- и меркуриметрии, колориметрией с использованием фосфорно-вольфрамовой к-ты и другими способами. Для определения SH-групп в белках применяют амперометрическое титрование с AgNO3, спектрофотометрические методы с участием n-хлормеркурибензоата, N-этилмалеимида и другие методы.

Библиография Биологическая активность некоторых аминотиолов и аминосульфидов, под ред. М. Н. Волкова, М., 1974; Г у б e н Й. и Вейль, Методы органической химии, пер. с нем., т. 2, с. 582, М., 1967; Робертс Д ж. и К а с e р и о М. Основы органической химии, пер. с англ., т. 2, с. 150, М., 1978; Торчинский Ю. М. Сера в белках, М., 1977; С т о й- ч e в Ц. Биологична активност на тиоло-вите съединения, София, 1975; E 1 u h а г-t у A. L. Biochemistry of the thiol group, в кн.: The chemistry of the thiol group, ed. by S. Patai, pt 2, p. 589, L., 1974.

А. И. Точилкин; В. П. Фисенко (фарм ).

источник

Димеркапрол
BAL
Химическое соединение
ИЮПАК 2,3-бис(сульфанил)пропан-1-ол
Брутто-формула C3H8OS2
Молярная масса 124,225
CAS 59-52-9
PubChem 3080
DrugBank 06782
Классификация
АТХ V03AB09
Лекарственные формы
масляный раствор для инъекций
Другие названия
BAL
Медиафайлы на Викискладе

Димеркапрол (МНН), также «Британский антилюизит», БАЛ, (англ. British anti-Lewisite, BAL ) — дезинтоксикационное лекарственное средство, сходное с унитиолом. Подобно унитиолу, он имеет две готовые к вступлению в связь сульфгидрильные группы (—SH), которые образуют достаточно устойчивый комплекс с тяжёлыми металлами, тем самым оказывая антидотное действие. Используется как антидот при отравлениях соединениями мышьяка и солями тяжелых металлов.

Внутримышечные инъекции препарата весьма болезненны. Он также вызывает тошноту, рвоту, тахикардию, гипертензию, головокружение и беспокойство [1] .

источник

Только самые актуальные официальные инструкции по применению лекарственных средств! Инструкции к лекарствам на нашем сайте публикуются в неизменном виде, в котором они и прилагаются к препаратам.

ЛЕКАРСТВЕННЫЕ ПРЕПАРАТЫ РЕЦЕПТУРНОГО ОТПУСКА НАЗНАЧАЮТСЯ ПАЦИЕНТУ ТОЛЬКО ВРАЧОМ. ДАННАЯ ИНСТРУКЦИЯ ТОЛЬКО ДЛЯ МЕДИЦИНСКИХ РАБОТНИКОВ.

Формула: C3H8OS2, химическое название: 2,3-димеркаптопропанол (в виде сульфоната натрия).
Фармакологическая группа: метаболики/ детоксицирующие средства, включая антидоты.
Фармакологическое действие: дезинтоксикационное.

Димеркаптопропансульфонат натрия связывается своими активными сульфгидрильными группами с находящимися в тканях и крови ядами, которые способны реагировать с тиоловыми (сульфгидрильными) группами ферментов и инактивировать их. В результате такого связывания образуются нетоксичные водорастворимые комплексы. Димеркаптопропансульфонат натрия применяется как антидот при отравлениях солями тяжелых металлов и соединениями мышьяка. После приема внутрь димеркаптопропансульфонат натрия проникает с портальным кровотоком в печень, где необратимо и быстро связывается с ацетальдегидом, это ведет к дальнейшему выведению этилового спирта из других тканей и органов. Вещество также активирует ацетальдегиддегидрогеназу, которая усиливает процесс окисления этанола и дезинтоксикацию его продуктов ферментами печени. После парентерального введения димеркаптопропансульфонат натрия в кровь всасывается быстро. Максимальная концентрация после внутримышечного введения достигается через 15 – 30 минут. Период полувыведения составляет 1 – 2 часа. При приеме внутрь максимальная концентрация в крови достигается через полтора часа и составляет 90 – 140 мкг/мл. Кажущийся стационарный объем распределения составляет 166,5 мкг/мл. Димеркаптопропансульфонат натрия выводится почками, в основном в виде продуктов полного и неполного окисления, частично выводится в неизмененном виде. Прочное связывание димеркаптопропансульфоната натрия с блокаторами сульфгидрильных групп и быстрая элиминация сформировавшихся соединений предупреждает связывание тиоловых групп ферментов и восстанавливает их активность, в результате симптомы отравления полностью устраняются или ослабевают. Димеркаптопропансульфонат натрия повышает выведение из металлсодержащих ферментов клеток некоторых катионов (в особенности цинка и меди). У пациентов с вторичным амилоидозом и диабетической полинейропатией димеркаптопропансульфонат способствует улучшению состояния периферической нервной системы, снижению болевого синдрома, нормализации проницаемости капилляров.

Хронические и острые отравления неорганическими и органическими соединениями ртути, мышьяка, золота, кадмия, хрома, кобальта, цинка, меди, никеля, сурьмы, висмута; гепатоцеребральная дистрофия (болезнь Вильсона — Коновалова); интоксикация сердечными гликозидами; диабетическая полинейропатия; алкогольный абстинентный синдром; хронический алкоголизм (в составе комплексного лечения).

Димеркаптопропансульфонат натрия принимается внутрь, вводится внутримышечно, подкожно. При отравлениях соединениями ртути и мышьяка: взрослые — внутримышечно, подкожно: 5 – 10 мл 5% водного раствора (из расчета 1 мл 5% раствора или 0,05 г препарата на 10 кг массы тела), в первые сутки каждые 6 – 8 часов (3 – 4 введения), возможно до 8 инъекций в тяжелых случаях; во вторые сутки каждые 8 – 12 часов (2 – 3 инъекции); дальше 1 – 2 введения. Внутрь, на прием по 0,25 – 0,5 г, можно дозу увеличить, при необходимости, до 0,75 мг в сутки в несколько приемов. Дети — внутримышечно, 1 мл 5% раствора на 10 кг массы тела, каждые 6 часов в первые сутки, 1 – 3 инъекции в последующие сутки. Длительность использования зависит от скорости выведения из организма токсичных соединений. Терапию проводят до исчезновения симптомов отравления. При интоксикации солями ртути препарат продолжают вводить в течение 6 – 7 суток.
При отравлении сердечными гликозидами: внутримышечно, подкожно 5 – 10 мл 5% раствора 3 – 4 раза в сутки в первые два дня, далее 1 – 2 раза в сутки до исчезновения кардиотоксического влияния.
При диабетической полинейропатии: внутрь по 0,25 г на протяжении 10 дней или по 5 мл 5% раствора на протяжении 10 дней.
При гепатоцеребральной дистрофии: внутримышечно 5 – 10 мл 5% раствора через день или каждый день, длительность составляет 25 – 30 инъекций с перерывами между курсами 3 – 4 месяца.
Купирование приступов алкогольного делирия: однократно внутримышечно 4 – 5 мл 5% раствора.
При хроническом алкоголизме: внутрь 2 – 3 раза в сутки по 0,5 г или внутримышечно 2 – 3 раза в неделю по 3 – 5 мл 5% раствора.
При острых отравлениях необходимо проведение и прочих лечебных мероприятий (промывание желудка, введение декстрозы, оксигенотерапия и другие).

Гиперчувствительность, артериальная гипертензия, тяжелые заболевания печени, беременность, кормление грудью.

Использование димеркаптопропансульфоната натрия противопоказано при беременности и в период кормления грудью.

Тошнота, тахикардия, рвота, гипертензия, головокружение, бледность кожных покровов, беспокойство, аллергические реакции.

Димеркаптопропансульфонат натрия фармацевтически несовместим со щелочами, препаратами, которые содержат тяжелые металлы, так как происходит его быстрая инактивация.

При передозировке димеркаптопропансульфонатом натрия развиваются одышка, заторможенность, оглушенность, гиперкинезы, вялость, кратковременные судороги (при превышении терапевтической дозы больше, чем в 10 раз). Необходимо симптоматическое лечение.

Комбинированные препараты:
Димеркаптопропансульфонат натрия + Кальция пантотенат: Зорекс®.

источник

Их можно рассматривать как производные Н2S, где один или оба атома Н замещены на радикал:

Тиолы имеют неприятный запах. Получают действием гидросульфида на галогеналканы:

метилмеркаптан этилмеркаптан (РН)

Пропантиол содержится в луке.

Поляризуемость атома S >, чем атома О, т.к. радиус атом S >, чем атома О, однако ЭО атома S >, чем атома О. Связь S – H менее полярна, чем О – Н, поэтому поэтому Н притягивается слабее к атому S, следовательно, тиолы более сильные к-ты, чем спирты (в 3 – 4 раза).

Тиолы взаимодействуют с щелочами и солями тяжелых Ме:

С солями ртути (II) образуются нерастворимые соли. На этом основано применение тиолов при отравлении солями Нg, As, Bi, Cr, Pb, Zn, Cd и др.

+ НgС12Нg + 2НС1

Лекарственный препарат БАЛ (британский антилюизит) – дитиоглицерин, или 2,3-димеркаптопропанол.

Унитиол – 2,3-димеркаптопропансульфонат натрия – в виде 5%-ного раствора с рН  3-5 широко применяется в медицине при отравлении солями тяжелых Ме. Группы – SH вступают в р-цию с ядами в крови тканях, образуя нетоксичные комплексы и выводятся с мочой. Унитиол

Подобно спиртам тиолы образуют простые и сложные эфиры, однако, как правило, не с к-той, а с ее производными:

4. Окисление тиолов отличается от окисления спиртов. Тиолы легко окисляются и в мягких условиях образуют дисульфиды:

2R – SH R–S–S–R

Многие ОВ реакции в организме основаны на р-ции тиол дисульфид.

Образование –SH и –S–S– связей определяет структуру белков.

Превращение цистеина в цистин:

2+ Н2О

Трипептид глютатион (-глютамилцистеинилглицин) входит в состав активного центра ОВ ферментов и содержит цистеин.

Прямые и кудрявые волосы – основа завивки – результат содержания и превращения цистеина в цистин.

Лекарственный препарат тетурам, применяемый при лечении алкоголизма, содержит дисульфидную группу. Действие тетурама основано на его способности задерживать окисление этанола на уровне ацетальдегида (видимо, блокируя фермент ацетальдегидоксидазу). Последний, накапливаясь в организме, вызывает крайне неприятные ощущения (появляется покраснение, жар, затруднение дыхания, шум в голове, серцебиение, чувство страха, понижается артериальное давление).

При жестком окислении тиолов образуются сульфокислоты, а из них при действии щелочей – алкилсульфонаты:

R – SH + 3O R – SO3H R – SO3Na

Сульфокислоты – сильные кислоты, рК  1.

Если R = высший алкил, то это – синтетические моющие средства.

Ароматические сульфок-ты – основа для синтеза лекарственных сульфаниламидных препаратов.

При окислении сульфидов образуются сульфоксиды:

Н3–S– СН3 + О СН3–СН3

ДМСО – сильнейший растворитель, ускоритель проникновения через кожу лекарственных соединений.

Липоевая к-та – природный дисульфид, который вместе с коферментом А (кофермент ацилирования) является важной частью ферментов при окислении предельных высших карбоновых к-т до уксусной к-ты.

Это производные аммиака NH3, где один, два или три атома Н замещены на радикал R (алифатический или ароматический).

В зависимости от числа атомов Н, замещенных на R, различают первичные, вторичные и третичные амины. NH2 – аминогруппа, –NH – иминогруппа.

источник